OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 15 — Jul. 16, 2012
  • pp: 16794–16800

Electro-optic directed AND/NAND logic circuit based on two parallel microring resonators

Yonghui Tian, Lei Zhang, and Lin Yang  »View Author Affiliations


Optics Express, Vol. 20, Issue 15, pp. 16794-16800 (2012)
http://dx.doi.org/10.1364/OE.20.016794


View Full Text Article

Acrobat PDF (8935 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report an electro-optic directed logic circuit which can implement the AND/NAND operations based on two parallel microring resonators. PIN diodes are embedded around microring resonators to achieve the carrier-injection modulation, two electrical pulse sequences regarded as the two operands of the operations are employed to modulate two microring resonators through the plasma dispersion effect. The operation results are obtained at the optical output ports in the form of light. Microheaters fabricated on the top of the microring resonators are employed to compensate two microring resonators resonance mismatch caused by the fabrication errors through the thermo-optic effect. The AND/NAND operations with the operation speed of 100Mbps are demonstrated simultaneously.

© 2012 OSA

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(130.3750) Integrated optics : Optical logic devices
(230.5750) Optical devices : Resonators
(250.5300) Optoelectronics : Photonic integrated circuits
(130.4815) Integrated optics : Optical switching devices

ToC Category:
Integrated Optics

History
Original Manuscript: May 22, 2012
Revised Manuscript: July 3, 2012
Manuscript Accepted: July 4, 2012
Published: July 10, 2012

Citation
Yonghui Tian, Lei Zhang, and Lin Yang, "Electro-optic directed AND/NAND logic circuit based on two parallel microring resonators," Opt. Express 20, 16794-16800 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-15-16794


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics4(5), 261–263 (2010). [CrossRef]
  2. D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE88(6), 728–749 (2000). [CrossRef]
  3. J. Chan and K. Bergman, “Photonic interconnection network architectures using wavelength-selective spatial routing for chip-scale communications,” J. Opt. Networking4(3), 189–201 (2012). [CrossRef]
  4. I. Artundo, L. Desmet, W. Heirman, C. Debaes, J. Dambre, J. Van Campenhout, and H. Thienpont, “Selective optical broadcast component for reconfigurable multiprocessor interconnects,” IEEE J. Sel. Top. Quantum Electron.12(4), 828–837 (2006). [CrossRef]
  5. N. M. Jokerst, M. A. Brooke, S. Y. Cho, S. Wilkinson, M. Vrazel, S. Fike, J. Tabler, Y. J. Joo, S. W. Seo, D. S. Wills, and A. Brown, “The heterogeneous integration of optical interconnections into integrated microsystems,” IEEE J. Sel. Top. Quantum Electron.9(2), 350–360 (2003). [CrossRef]
  6. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004). [CrossRef] [PubMed]
  7. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005). [CrossRef] [PubMed]
  8. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010). [CrossRef]
  9. W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express15(25), 17106–17113 (2007). [CrossRef] [PubMed]
  10. N. N. Feng, S. Liao, D. Z. Feng, P. Dong, D. Zheng, H. Liang, R. Shafiiha, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High speed carrier-depletion modulators with 1.4V-cm V(π)L integrated on 0.25microm silicon-on-insulator waveguides,” Opt. Express18(8), 7994–7999 (2010). [CrossRef] [PubMed]
  11. X. G. Tu, T. Y. Liow, J. F. Song, M. B. Yu, and G. Q. Lo, “Fabrication of low loss and high speed silicon optical modulator using doping compensation method,” Opt. Express19(19), 18029–18035 (2011). [CrossRef] [PubMed]
  12. F. Y. Gardes, D. J. Thomson, N. G. Emerson, and G. T. Reed, “40 Gb/s silicon photonics modulator for TE and TM polarisations,” Opt. Express19(12), 11804–11814 (2011). [CrossRef] [PubMed]
  13. S. J. Spector, M. W. Geis, G. R. Zhou, M. E. Grein, F. Gan, M. A. Popovic, J. U. Yoon, D. M. Lennon, E. P. Ippen, F. Z. Kärtner, and T. M. Lyszczarz, “CMOS-compatible dual-output silicon modulator for analog signal processing,” Opt. Express16(15), 11027–11031 (2008). [CrossRef] [PubMed]
  14. L. Zhang, R. Q. Ji, L. X. Jia, L. Yang, P. Zhou, Y. H. Tian, P. Chen, Y. Y. Lu, Z. Y. Jiang, Y. L. Liu, Q. Fang, and M. B. Yu, “Demonstration of directed XOR/XNOR logic gates using two cascaded microring resonators,” Opt. Lett.35(10), 1620–1622 (2010). [CrossRef] [PubMed]
  15. Y. H. Tian, L. Zhang, R. Q. Ji, L. Yang, P. Zhou, H. T. Chen, J. F. Ding, W. W. Zhu, Y. Y. Lu, L. X. Jia, Q. Fang, and M. Yu, “Proof of concept of directed OR/NOR and AND/NAND logic circuit consisting of two parallel microring resonators,” Opt. Lett.36(9), 1650–1652 (2011). [PubMed]
  16. S. Lin, Y. Ishikawa, and K. Wada, “Demonstration of optical computing logics based on binary decision diagram,” Opt. Express20(2), 1378–1384 (2012). [CrossRef] [PubMed]
  17. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics1(1), 65–71 (2007). [CrossRef]
  18. Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys.3(6), 406–410 (2007). [CrossRef]
  19. A. Khilo, S. J. Spector, M. E. Grein, A. H. Nejadmalayeri, C. W. Holzwarth, M. Y. Sander, M. S. Dahlem, M. Y. Peng, M. W. Geis, N. A. DiLello, J. U. Yoon, A. Motamedi, J. S. Orcutt, J. P. Wang, C. M. Sorace-Agaskar, M. A. Popović, J. Sun, G. R. Zhou, H. Byun, J. Chen, J. L. Hoyt, H. I. Smith, R. J. Ram, M. Perrott, T. M. Lyszczarz, E. P. Ippen, and F. X. Kärtner, “Photonic ADC: overcoming the bottleneck of electronic jitter,” Opt. Express20(4), 4454–4469 (2012). [CrossRef] [PubMed]
  20. J. Hardy and J. Shamir, “Optics inspired logic architecture,” Opt. Express15(1), 150–165 (2007). [CrossRef] [PubMed]
  21. H. J. Caulfield, R. A. Soref, and C. S. Vikram, “Universal reconfigurable optical logic with silicon-oninsulator resonant structures,” Photon. Nanostruct. Fundam. Appl.5(1), 14–20 (2007). [CrossRef]
  22. Q. F. Xu and R. A. Soref, “Reconfigurable optical directed-logic circuits using microresonator-based optical switches,” Opt. Express19(6), 5244–5259 (2011). [CrossRef] [PubMed]
  23. R. Soref, “Reconfigurable integrated optoelectronics,” Adv. Optoelectron.2011, 627802 (2011).
  24. A. S. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express15(2), 660–668 (2007). [CrossRef] [PubMed]
  25. M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater.5(9), 703–709 (2006). [CrossRef] [PubMed]
  26. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics3(4), 216–219 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited