OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 15 — Jul. 16, 2012
  • pp: 16815–16822

Surface relief structures for a flexible broadband terahertz absorber

Dong-Hyun Kim, Dae-Seon Kim, Sehyun Hwang, and Jae-Hyung Jang  »View Author Affiliations


Optics Express, Vol. 20, Issue 15, pp. 16815-16822 (2012)
http://dx.doi.org/10.1364/OE.20.016815


View Full Text Article

Enhanced HTML    Acrobat PDF (2683 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Terahertz (THz) absorbers with surface relief structures (SRSs) were designed and fabricated on a flexible polydimethylsiloxane(PDMS) substrate by using a stamping method. The silicon mold used for the stamping process was prepared by using a crystallographic wet etching method with 45% KOH solution at 80°C. The flexible THz absorber, consisting of micropyramids with a base width of 240 μm, demonstrated nearly perfect absorbance higher than 99% owing to the dramatically reduced surface reflectance of the SRS. The reflectance of the PDMS with the SRS was less than 1%, which is only 1/100th of that measured from a bare PDMS at frequency higher than 1 THz.

© 2012 OSA

OCIS Codes
(310.1210) Thin films : Antireflection coatings

ToC Category:
Thin Films

History
Original Manuscript: June 1, 2012
Revised Manuscript: July 1, 2012
Manuscript Accepted: July 2, 2012
Published: July 10, 2012

Citation
Dong-Hyun Kim, Dae-Seon Kim, Sehyun Hwang, and Jae-Hyung Jang, "Surface relief structures for a flexible broadband terahertz absorber," Opt. Express 20, 16815-16822 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-15-16815


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics1(2), 97–105 (2007). [CrossRef]
  2. B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater.1(1), 26–33 (2002). [CrossRef] [PubMed]
  3. B. M. Fischer, M. Hoffmann, H. Helm, R. Wilk, F. Rutz, T. Kleine-Ostmann, M. Koch, and P. Jepsen, “Terahertz time-domain spectroscopy and imaging of artificial RNA,” Opt. Express13(14), 5205–5215 (2005). [CrossRef] [PubMed]
  4. R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol.47(21), 3853–3863 (2002). [CrossRef] [PubMed]
  5. H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid state terahertz phase modulator,” Nat. Photonics3(3), 148–151 (2009). [CrossRef]
  6. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express16(10), 7181–7188 (2008). [CrossRef] [PubMed]
  7. S. Hayashi, K. Nawata, H. Sakai, T. Taira, H. Minamide, and K. Kawase, “High-power, single-longitudinal-mode terahertz-wave generation pumped by a microchip Nd:YAG laser [Invited],” Opt. Express20(3), 2881–2886 (2012). [CrossRef] [PubMed]
  8. E. Castro-Camus, J. Lloyd-Hughes, L. Fu, H. H. Tan, C. Jagadish, and M. B. Johnston, “An ion-implanted InP receiver for polarization resolved terahertz spectroscopy,” Opt. Express15(11), 7047–7057 (2007). [CrossRef] [PubMed]
  9. H.-T. Chen, J. F. O’Hara, A. K. Azad, and A. J. Taylor, “Manipulation of terahertz radiation using metamaterials,” Laser Photon. Rev.5(4), 513–533 (2011). [CrossRef]
  10. J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. S. Cumming, “Polarization insensitive, broadband terahertz metamaterial absorber,” Opt. Lett.36(17), 3476–3478 (2011). [CrossRef] [PubMed]
  11. L. Zhang, H. Zhong, C. Deng, C. Zhang, and Y. Zhao, “Terahertz wave reference-free phase imaging for identification of explosives,” Appl. Phys. Lett.92(9), 091117 (2008). [CrossRef]
  12. N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B79(12), 125104 (2009). [CrossRef]
  13. H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metameterial absorber,” J. Phys. D Appl. Phys.43(22), 225102 (2010). [CrossRef]
  14. X.-J. He, Y. Wang, J.-M. Wang, and T.-L. Gui, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromag. Res.115, 381–397 (2011).
  15. Y. Q. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B27(3), 498–504 (2010). [CrossRef]
  16. J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. S. Cumming, “Polarization insensitive, broadband terahertz metamaterial absorber,” Opt. Lett.36(17), 3476–3478 (2011). [CrossRef] [PubMed]
  17. Y. W. Chen, P. Y. Han, and X.-C. Zhang, “Tunable broadband antireflection structures for silicon at terahertz frequency,” Appl. Phys. Lett.94(4), 041106 (2009). [CrossRef]
  18. B. T. DeWitt and W. D. Burnside, “Electromagneic scattering by pyramidal and wedge absorber,” IEEE Trans. Antenn. Propag.36(7), 971–984 (1988). [CrossRef]
  19. Y. M. Song and Y. T. Lee, “Investigation of geometrical effects of antireflective subwavelength grating structures for optical device applications,” Opt. Quantum Electron.41(10), 771–777 (2009). [CrossRef]
  20. E. Bassous and E. Bassous, “Fabrication of novel three-dimensional microstructures by the anisotropic etching of (100) and (110) silicon,” IEEE Trans. Electron. Dev.25(10), 1178–1185 (1978). [CrossRef]
  21. M. G. Moharam and T. K. Gaylord, “Three-dimensional vector coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am.73(9), 1105–1112 (1983). [CrossRef]
  22. P. A. George, W. Hui, F. Rana, B. G. Hawkins, A. E. Smith, and B. J. Kirby, “Microfluidic devices for terahertz spectroscopy of biomolecules,” Opt. Express16(3), 1577–1582 (2008). [CrossRef] [PubMed]
  23. C. Brückner, T. Käsebier, B. Pradarutti, S. Riehemann, G. Notni, E.-B. Kley, and A. Tünnermann, “Broadband antireflective structures applied to high resistive float zone silicon in the THz spectral range,” Opt. Express17(5), 3063–3077 (2009). [CrossRef] [PubMed]
  24. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B78(24), 241103 (2008). [CrossRef]
  25. Z. Wu, J. Walish, A. Nolte, L. Zhai, R. E. Cohen, and M. F. Rubner, “Deformable antireflection coatings from polymer and nanoparticle multilayers,” Adv. Mater. (Deerfield Beach Fla.)18(20), 2699–2702 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited