OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 15 — Jul. 16, 2012
  • pp: 16861–16870

Ultra-low reflection porous silicon nanowires for solar cell applications

A. Najar, J. Charrier, P. Pirasteh, and R. Sougrat  »View Author Affiliations


Optics Express, Vol. 20, Issue 15, pp. 16861-16870 (2012)
http://dx.doi.org/10.1364/OE.20.016861


View Full Text Article

Enhanced HTML    Acrobat PDF (1361 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

High density vertically aligned Porous Silicon NanoWires (PSiNWs) were fabricated on silicon substrate using metal assisted chemical etching process. A linear dependency of nanowire length to the etching time was obtained and the change in the growth rate of PSiNWs by increasing etching durations was shown. A typical 2D bright-field TEM image used for volume reconstruction of the sample shows the pores size varying from 10 to 50 nm. Furthermore, reflectivity measurements show that the 35% reflectivity of the starting silicon wafer drops to 0.1%, recorded for more than 10 μm long PSiNWs. Models based on cone shape of nanowires located in a circular and rectangular bases were used to calculate the reflectance employing the Transfert Matrix Formalism (TMF) of the PSiNWs layer. Using TMF, the Bruggeman model was used to calculate the refractive index of PSiNWs layer. The calculated reflectance using circular cone shape fits better the measured reflectance for PSiNWs. The remarkable decrease in optical reflectivity indicates that PSiNWs is a good antireflective layer and have a great potential to be utilized in radial or coaxial p-n heterojunction solar cells that could provide orthogonal photon absorption and enhanced carrier collection.

© 2012 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(310.1210) Thin films : Antireflection coatings
(310.1860) Thin films : Deposition and fabrication

ToC Category:
Solar Energy

History
Original Manuscript: March 19, 2012
Revised Manuscript: May 22, 2012
Manuscript Accepted: May 23, 2012
Published: July 11, 2012

Citation
A. Najar, J. Charrier, P. Pirasteh, and R. Sougrat, "Ultra-low reflection porous silicon nanowires for solar cell applications," Opt. Express 20, 16861-16870 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-15-16861


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Tsakalakos, “Nanostructures for photovoltaics,” Mater. Sci. Eng.62(6), 175–189 (2008). [CrossRef]
  2. N. S. Lewis, “Toward cost-effective solar energy use,” Science315(5813), 798–801 (2007). [CrossRef] [PubMed]
  3. P. Lalanne and G. M. Morris, “Design, fabrication and characterization of subwavelength periodic structures for semiconductor anti-reflection coating in the visible domain,” Proc. SPIE2776, 300–309 (1996). [CrossRef]
  4. T. L. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett.57(10), 1046–1048 (1990). [CrossRef]
  5. A. Najar, J. Charrier, H. Ajlani, N. Lorrain, S. Haesaert, M. Oueslati, and L. Haji, “Optical gain at 1.53 μm in Er3+-Yb3+ co-doped porous silicon waveguides,” Mater. Sci. Eng. B146(1-3), 260–263 (2008). [CrossRef]
  6. A. Najar, J. Charrier, N. Lorrain, L. Haji, and M. Oueslati, “Optical gain measurements in porous silicon planar waveguides codoped by erbium and ytterbium ions at 1.53 μm,” Appl. Phys. Lett.91(12), 121120 (2007). [CrossRef]
  7. S. Yae, T. Kobayashi, T. Kawagishi, N. Fukumuro, and H. Matsuda, “Antireflective porous layer formation on multicrystalline silicon by metal particle enhanced HF etching,” Sol. Energy80(6), 701–706 (2006). [CrossRef]
  8. P. Vitanov, M. Kamenova, N. Tyutyundzhiev, M. Delibasheva, E. Goranova, and M. Peneva, “High-efficiency solar cell using a thin porous silicon layer,” Thin Solid Films297(1-2), 299–303 (1997). [CrossRef]
  9. K. Ueda, Y. Nakato, and H. Tsubomura, “Efficient and stable solar to chemical conversion with n+-p junction crystalline silicon electrodes having textured surfaces,” Sol. Energy Mater.17(1), 37–46 (1988). [CrossRef]
  10. K. Q. Peng, Y. Xu, Y. Wu, Y. J. Yan, S. T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small1(11), 1062–1067 (2005). [CrossRef] [PubMed]
  11. O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett.8(9), 2638–2642 (2008). [CrossRef] [PubMed]
  12. T. Stelzner, M. Pietsch, G. Andrä, F. Falk, E. Ose, and S. Christiansen, “Silicon nanowire-based solar cells,” Nanotechnology19(29), 295203 (2008). [CrossRef] [PubMed]
  13. V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S. H. Christiansen, “Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters,” Nano Lett.9(4), 1549–1554 (2009). [CrossRef] [PubMed]
  14. B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys.97(11), 114302 (2005). [CrossRef]
  15. B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature449(7164), 885–889 (2007). [CrossRef] [PubMed]
  16. E. C. Garnett and P. D. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc.130(29), 9224–9225 (2008). [CrossRef] [PubMed]
  17. L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett.91(23), 233117 (2007). [CrossRef]
  18. L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett.7(11), 3249–3252 (2007). [CrossRef] [PubMed]
  19. L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber, “Epitaxial core-shell and core-multishell nanowire heterostructures,” Nature420(6911), 57–61 (2002). [CrossRef] [PubMed]
  20. M. Law, J. Goldberger, and P. D. Yang, “Semiconductor nanowires and nanotubes,” Annu. Rev. Mater. Res.34(1), 83–122 (2004). [CrossRef]
  21. A. I. Hochbaum, D. Gargas, Y. J. Hwang, and P. D. Yang, “Single crystalline mesoporous silicon nanowires,” Nano Lett.9(10), 3550–3554 (2009). [CrossRef] [PubMed]
  22. A. Najar, A. B. Slimane, M. N. Hedhili, D. H. Anjum, T. K. Ng and Boon S. Ooi, “Structural and optical properties of porous silicon nanowires prepared by metal-assisted electroless etching method - effect of HF concentration,” J. of Appl. Phys., (2012). (under reviewing)
  23. D. E. Aspnes, “Optical properties of thin films,” Thin Solid Films89(3), 249–262 (1982). [CrossRef]
  24. W. Theiss, “Optical properties of porous silicon,” Surf. Sci. Reports 29 91–93 and 95–192 (1997).
  25. T.-H. Pei, S. Tiyagu, and Z. Pei, “Ultra high-density silicon nanowires for extremely low reflection in visible regime,” Appl. Phys. Lett.99(15), 153108 (2011). [CrossRef]
  26. A. C. Diebold and J. Price, “Observation of quantum confinement and quantum size effects,” Phys. Status Solidi205(4), 896–900 (2008) (a). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited