OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 15 — Jul. 16, 2012
  • pp: 16880–16891

Ultrasmall metal-insulator-metal nanoresonators: impact of slow-wave effects on the quality factor

J. Yang, C. Sauvan, A. Jouanin, S. Collin, J.-L. Pelouard, and P. Lalanne  »View Author Affiliations

Optics Express, Vol. 20, Issue 15, pp. 16880-16891 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (3364 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the quality factor variation of three-dimensional Metal-Insulator-Metal nanoresonators when their volume is shrunk from the diffraction limit (λ/2n)3 down to a deep subwavelength scale (λ/50)3. In addition to rigorous fully-vectorial calculations, we provide a semi-analytical expression of the quality factor Q obtained with a Fabry-Perot model. The latter quantitatively predicts the absorption and radiation losses of the nanoresonator and provides an in-depth understanding of the mode lifetime that cannot be obtained with brute-force computations. In particular, it highlights the impact of slow-wave effects on the Q-factor as the size of the resonator is decreased. The Fabry-Perot model also evidences that, unexpectedly, wave retardation effects are present in metallic nanoparticles, even for deep subwavelength dimensions in the quasi-static regime.

© 2012 OSA

OCIS Codes
(230.5750) Optical devices : Resonators
(240.6680) Optics at surfaces : Surface plasmons
(160.3918) Materials : Metamaterials
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:

Original Manuscript: March 23, 2012
Manuscript Accepted: June 22, 2012
Published: July 11, 2012

J. Yang, C. Sauvan, A. Jouanin, S. Collin, J.-L. Pelouard, and P. Lalanne, "Ultrasmall metal-insulator-metal nanoresonators: impact of slow-wave effects on the quality factor," Opt. Express 20, 16880-16891 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics1, 41–48 (2007). [CrossRef]
  2. C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics5, 523–530 (2011).
  3. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. van Duyne, “Biosensing with plasmonic nanosensors,” Nature Mater.7, 442–453 (2008). [CrossRef]
  4. N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nature Mater.10, 631–636 (2011). [CrossRef]
  5. A. Cattoni, P. Ghenuche, A. M. Haghiri-Gosnet, D. Decanini, J. Chen, J.-L. Pelouard, and S. Collin, “λ3/1000 plasmonic nanocavities for biosensing fabricated by soft uv nanoimprint lithography,” Nano Lett.11, 3557–3563 (2011). [CrossRef] [PubMed]
  6. H. A. Atwater and A. Polman, “Plasmonic for improved photovoltaic devices,” Nature Mater.9, 205–213 (2010). [CrossRef]
  7. I. S. Maksymov, M. Besbes, J.-P. Hugonin, J. Yang, A. Beveratos, I. Sagnes, I. Robert-Philip, and P. Lalanne, “Metal-coated nanocylinder cavity for broadband nonclassical light emission,” Phys. Rev. Lett.105, 180502 (2010).
  8. J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Loncar, “Enhanced single-photon emission from a diamond-silver aperture,” Nat. Photonics5, 738–743 (2011). [CrossRef]
  9. M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics4, 395–399 (2010). [CrossRef]
  10. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988).
  11. H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett.96, 097401 (2006). [CrossRef] [PubMed]
  12. G. Leveque and O. J. F. Martin, “Tunable composite nanoparticle for plasmonics,” Opt. Lett.31, 2750–2752 (2006). [CrossRef] [PubMed]
  13. M. Kuttge, F. J. G. de Abajo, and A. Polman, “Ultrasmall mode volume plasmonic nanodisk resonators,” Nano Lett.10, 1537–1541 (2010). [CrossRef]
  14. G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, “Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials,” Opt. Lett.30, 3198–3200 (2005). [CrossRef] [PubMed]
  15. V. M. Shalaev, W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett.30, 3356–3358 (2005). [CrossRef]
  16. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett.95, 137404 (2005). [CrossRef] [PubMed]
  17. A. Mary, S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Theory of negative-refractive-index response of double-fishnet structures,” Phys. Rev. Lett.101, 103902 (2008). [CrossRef] [PubMed]
  18. J. Yang, C. Sauvan, H. T. Liu, and P. Lalanne, “Theory of fishnet negative-index optical metamaterials,” Phys. Rev. Lett.107, 043903 (2011). [CrossRef] [PubMed]
  19. L. C. Lindquist, W. A. Luhman, S. H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett.93, 123308 (2008). [CrossRef]
  20. J. Le Perchec, Y. Desieres, and R. Espiau de Lamaestre, “Plasmon-based photosensors comprising a very thin semiconducting region,” Appl. Phys. Lett.94, 181104 (2009). [CrossRef]
  21. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10, 2342–2348 (2010). [CrossRef] [PubMed]
  22. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96, 251104 (2010). [CrossRef]
  23. C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B84, 075102 (2011). [CrossRef]
  24. C. Koechlin, P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J.-L. Pelouard, and R. Haidar, “Total routing and absorption of photons in dual color plasmonic antennas,” Appl. Phys. Lett.99, 241104 (2011). [CrossRef]
  25. Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: analysis of optical properties,” Phys. Rev. B75, 035411 (2007). [CrossRef]
  26. S. I. Bozhevolnyi and T. Søndergaard, “General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators,” Opt. Express15, 10869–10877 (2007). [CrossRef] [PubMed]
  27. J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B79, 035401 (2007). [CrossRef]
  28. F. Garwe, C. Rockstuhl, C. Etrich, U. Hübner, U. Bauerschäfer, F. Setzpfandt, M. Augustin, T. Pertsch, A. Tünnermann, and F. Lederer, “Evaluation of gold nanowire pairs as a potential negative index material,” Appl. Phys. B84, 139–148 (2006). [CrossRef]
  29. C. Rockstuhl, C. Menzel, S. Mühlig, J. Petschulat, C. Helgert, C. Etrich, A. Chipouline, T. Pertsch, and F. Lederer, “Scattering properties of meta-atoms,” Phys. Rev. B83, 245119 (2011). [CrossRef]
  30. C. Sauvan, P. Lalanne, and J.-P. Hugonin, “Slow-wave effect and mode-profile matching in photonic crystal microcavities,” Phys. Rev. B71, 165118 (2005). [CrossRef]
  31. P. Lalanne, C. Sauvan, and J.-P. Hugonin, “Photon confinement in photonic crystal nanocavities,” Laser and Photon. Rev.2, 514–526 (2008). [CrossRef]
  32. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett.95, 257403 (2005). [CrossRef] [PubMed]
  33. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98, 266802 (2007). [CrossRef] [PubMed]
  34. E. S. Barnard, J. S. White, A. Chandran, and M. L. Brongersma, “Spectral properties of plasmonic resonator antennas,” Opt. Express16, 16529–16537 (2008). [CrossRef] [PubMed]
  35. J. Dorfmuller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-perot resonances in one-dimensional plasmonic nanostructures,” Nano Lett.9, 2372–2377 (2009). [CrossRef] [PubMed]
  36. T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Optical nanorod antennas modeled as cavities for dipolar emitters: evolution of sub- and super-radiant modes,” Nano Lett.11, 1020–1024 (2011). [CrossRef] [PubMed]
  37. F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett.97, 206806 (2006). [CrossRef] [PubMed]
  38. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370 (1972). [CrossRef]
  39. E. Silberstein, P. Lalanne, J.-P. Hugonin, and Q. Cao, “On the use of grating theory in integrated optics,” J. Opt. Soc. Am. A18, 2865–2875 (2001). [CrossRef]
  40. M. Besbes, J.-P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. V. Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Europ. Opt. Soc. Rap. Public.2, 07022 (2007). [CrossRef]
  41. E. N. Economou, “Surface plasmons in thin films,” Phys. Rev.182, 539–554 (1969). [CrossRef]
  42. Because of symmetry reasons, anti-symmetric higher-order modes do not impact the reflectivity of the symmetric fundamental mode.
  43. Unusual Fabry-Perot resonances with m = 0 may exist in subwavelength metallic structures, see E. Feigenbaum and M. Orenstein, “Ultrasmall volume plasmons, yet with complete retardation effects”, Phys. Rev. Lett.101, 163902 (2008). For this situation to occur, the positive propagation phase has to be fully compensated by a negative reflection phase. Such a resonance does not exist in the MIM resonators under study since ϕr ≈ 0. [CrossRef] [PubMed]
  44. The assumption Lp ≪ L is valid, since for large waveguide cross-sections (w = 100 nm and td = 100 nm) Lp ≈ 5 nm ≪ L ≈ 100 nm and for small cross-sections (w = 40 nm and td < 25 nm) Lp < 1 nm ≪ L ≈ 30 nm.
  45. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  46. S. B. Hasan, R. Filter, A. Ahmed, R. Vogelgesang, R. Gordon, C. Rockstuhl, and F. Lederer, “Relating localized nanoparticle resonances to an associated antenna problem,” Phys. Rev. B84, 195405 (2011). [CrossRef]
  47. G. Della Valle, T. Søndergaard, and S. I. Bozhevolnyi, “High-Q plasmonic resonators based on metal split nanocylinders,” Phys. Rev. B80, 235405 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited