OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 15 — Jul. 16, 2012
  • pp: 16902–16912

Generation of Greenberger-Horne-Zeilinger state of distant diamond nitrogen-vacancy centers via nanocavity input-output process

Anshou Zheng, Jiahua Li, Rong Yu, Xin-You Lü, and Ying Wu  »View Author Affiliations


Optics Express, Vol. 20, Issue 15, pp. 16902-16912 (2012)
http://dx.doi.org/10.1364/OE.20.016902


View Full Text Article

Enhanced HTML    Acrobat PDF (909 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An alternative scheme is proposed for the generation of an N-qubit Greenberger-Horne-Zeilinger (GHZ) state with distant nitrogen-vacancy (N-V) centers confined in spatially separated photonic crystal (PC) nanocavities via input-output process of photon. The GHZ state is produced by the phase shift brought by the input-output photon. The certain polarized photon transmitted from a PC nanocavity side-coupled a waveguide can obtain different phase shifts due to the different spin states in diamond N-V centers and the optical spin selection rule. Our calculations show that the proposed scheme can work well with a large cavity damping rate which ensures the efficient output of photon.

© 2012 OSA

OCIS Codes
(270.5580) Quantum optics : Quantum electrodynamics
(140.3945) Lasers and laser optics : Microcavities
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: March 26, 2012
Revised Manuscript: May 18, 2012
Manuscript Accepted: July 3, 2012
Published: July 11, 2012

Citation
Anshou Zheng, Jiahua Li, Rong Yu, Xin-You Lü, and Ying Wu, "Generation of Greenberger-Horne-Zeilinger state of distant diamond nitrogen-vacancy centers via nanocavity input-output process," Opt. Express 20, 16902-16912 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-15-16902


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev.47, 777–780 (1935). [CrossRef]
  2. N. D. Mermin, “Extreme quantum entanglement in a superposition of macroscopically distinct states,” Phys. Rev. Lett.65, 1838–1840 (1990). [CrossRef] [PubMed]
  3. J. J. Bollinger, W. M. Itano, D. Wineland, and D. Heinzen, “Optimal frequency measurements with maximally correlated states,” Phys. Rev. A54, 4649–4652(R) (1996). [CrossRef]
  4. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).
  5. W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A62, 062314 (2000). [CrossRef]
  6. D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys.58, 1131–1143 (1990). [CrossRef]
  7. H. J. Briegel and R. Raussendorf, “Persistent entanglement in arrays of interacting particles,” Phys. Rev. Lett.86, 910–913 (2001). [CrossRef] [PubMed]
  8. A. Karlsson and M. Bourennane, “Quantum teleportation using three-particle entanglement,” Phys. Rev. A58, 4394–4400 (1998). [CrossRef]
  9. N. Gisin and S. Massar, “Optimal quantum cloning machines,” Phys. Rev. Lett.79, 2153–2156 (1997). [CrossRef]
  10. R. Cleve, D. Gottesman, and H. K. Lo, “How to share a quantum secret,” Phys. Rev. Lett.83, 648–651 (1999). [CrossRef]
  11. Y. Wu and L. Deng, “Achieving multifrequency mode entanglement with ultraslow multiwave mixing,” Opt. Lett.29, 1144–1146 (2004). [CrossRef] [PubMed]
  12. Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Preparation of multiparty entangled states using pairwise perfectly efficient single-probe photon four-wave mixing,” Phys. Rev. A69, 063803 (2004). [CrossRef]
  13. M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, “Experimental realization of a three-qubit entangled W state,” Phys. Rev. Lett.92, 077901 (2004). [CrossRef] [PubMed]
  14. X. Y. Lü, P. J. Song, J. B. Liu, and X. X. Yang, “N-qubit W state of spatially separated single molecule magnets,” Opt. Express17, 14298–14311 (2009). [CrossRef] [PubMed]
  15. S. B. Zheng, “One-step synthesis of multiatom Greenberger-Horne-Zeilinger states,” Phys. Rev. Lett.87, 230404 (2001). [CrossRef] [PubMed]
  16. C. F. Roos, M. Riebe, H. Haffner, W. Hansel, J. Benhelm, G. P. T. Lancaster, C. Becher, F. Schmidt-Kaler, and R. Blatt, “Control and measurement of three-qubit entangled states,” Science304, 1478–1480 (2004). [CrossRef] [PubMed]
  17. X. Y. Lü, L. G. Si, X. Y. Hao, and X. X. Yang, “Achieving multipartite entanglement of distant atoms through selective photon emission and absorption processes,” Phys. Rev. A79, 052330 (2009). [CrossRef]
  18. J. W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement,” Nature (London)403, 515–519 (2000). [CrossRef]
  19. X. Wang, A. Bayat, S. Bose, and S. G. Schirmer, “Global control methods for Greenberger-Horne-Zeilinger-state generation on a one-dimensional Ising chain,” Phys. Rev. A82, 012330 (2010). [CrossRef]
  20. X. B. Zou, K. Pahlke, and W. Mathis, “Conditional generation of the Greenberger-Horne-Zeilinger state of four distant atoms via cavity decay,” Phys. Rev. A68, 024302 (2003). [CrossRef]
  21. Y. Xia, J. Song, and H. S. Song, “Linear optical protocol for preparation of N-photon Greenberger-Horne-Zeilinger state with conventional photon detectors,” Appl. Phys. Lett.92, 021127 (2008). [CrossRef]
  22. S. B. Zheng, “Generation of Greenberger-Horne-Zeilinger states for multiple atoms trapped in separated cavities,” Eur. Phys. J. D54, 719–722 (2009). [CrossRef]
  23. K. Koshino, S. Ishizaka, and Y. Nakamura, “Deterministic photon-photon SWAP gate using a Λ system,” Phys. Rev. A82, 010301(R) (2010). [CrossRef]
  24. S. Mancini and S. Bose, “Engineering an interaction and entanglement between distant atoms,” Phys. Rev. A70, 022307 (2004). [CrossRef]
  25. G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys.2, 81–90 (2006). [CrossRef]
  26. B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater.4, 207–210 (2005). [CrossRef]
  27. A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, “Controlled coupling of a single nitrogen-vacancy center to a silver nanowire,” Phys. Rev. Lett.106, 096801 (2011). [CrossRef] [PubMed]
  28. F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett.93, 130501 (2004). [CrossRef] [PubMed]
  29. R. J. Epstein, F. M. Mendoza, Y. K. Kato, and D. D. Awschalom, “Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond,” Nat. Phys.1, 94–98 (2005). [CrossRef]
  30. T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys.2, 408–413 (2006). [CrossRef]
  31. M. V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science316, 1312–1316 (2007). [CrossRef]
  32. R. Hanson, V. V. Dobrovitski, A. E. Feiguin, O. Gywat, and D. D. Awschalom, “Coherent dynamics of a single spin interacting with an adjustable spin bath,” Science320, 352–355 (2008). [CrossRef] [PubMed]
  33. Y. S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett.6, 2075–2079 (2006). [CrossRef] [PubMed]
  34. M. Larsson, K. N. Dinyari, and H. Wang, “Composite optical microcavity of diamond nanopillar and silica microsphere,” Nano Lett.9, 1447–1450 (2009). [CrossRef] [PubMed]
  35. E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature (London)466, 730–734 (2010). [CrossRef]
  36. T. van der Sar, J. Hagemeier, W. Pfaff, E. C. Heeres, S. M. Thon, H. Kim, P. M. Petroff, T. H. Oosterkamp, D. Bouwmeester, and R. Hanson, “Deterministic nanoassembly of a coupled quantum emitter-photonic crystal cavity system,” Appl. Phys. Lett.98, 193103 (2011). [CrossRef]
  37. D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett.10, 3922–3926 (2010). [CrossRef] [PubMed]
  38. S. Tomljenovic-Hanic, M. J. Steel, and C. Martijn de Sterke, “Diamond based photonic crystal microcavities,” Opt. Express14, 3556–3562 (2006). [CrossRef] [PubMed]
  39. M. W. McCutcheon and M. Lončar, “Design of a silicon nitride photonic crystal nanocavity with a quality factor of one million for coupling to a diamond nanocrystal,” Opt. Express16, 19136–19145 (2008). [CrossRef]
  40. M. Barth, N. Nüsse, B. Löchel, and O. Benson, “Controlled coupling of a single-diamond nanocrystal to a photonic crystal cavity,” Opt. Lett.34, 1108–1110 (2009). [CrossRef] [PubMed]
  41. J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett.97, 141108 (2010). [CrossRef]
  42. F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillations in a single electron spin,” Phys. Rev. Lett.92, 076401 (2004). [CrossRef] [PubMed]
  43. F. Z. Fan, X. Rong, N. Y. Xu, Y. Wang, J. Wu, B. Chong, X. Peng, J. Kniepert, R. Schoenfeld, W. Harneit, M. Feng, and J. F. Du, “Room-temperature implementation of the Deutsch-Jozsa algorithm with a single electronic spin in diamond,” Phys. Rev. Lett.105, 040504 (2010). [CrossRef]
  44. S. H. Kim and Y. H. Lee, “Symmetry relations of two-dimensional photonic crystal cavity modes,” IEEE J. Quantum Electron.39, 1081–1085 (2003). [CrossRef]
  45. Y. Eto, A. Noguchi, P. Zhang, M. Ueda, and M. Kozuma, “Projective measurement of a single nuclear spin qubit by using two-mode cavity QED,” Phys. Rev. Lett.106, 160501 (2011). [CrossRef] [PubMed]
  46. A. Lenef and S. C. Rand, “Electronic structure of the N-V center in diamond: theory,” Phys. Rev. B53, 13441–13455 (1995). [CrossRef]
  47. E. van Oort, N. B. Manson, and M. Glasbeek, “Optically detected spin coherence of the diamond NV centre in its triplet ground state,” J. Phys. C21, 4385–4391 (1988). [CrossRef]
  48. C. Santori, D. Fattal, S. M. Spillane, M. Fiorentino, R. G. Beausoleil, A. D. Greentree, P. Olivero, M. Draganski, J. R. Rabeau, P. Reichart, S. Rubanov, D. N. Jamieson, and S. Prawer, “Coherent population trapping in diamond N-V centers at zero magnetic field,” Opt. Express14, 7986–7994 (2006). [CrossRef] [PubMed]
  49. J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low- Q cavities,” Phys. Rev. A79, 032303 (2009). [CrossRef]
  50. L. M. Duan, B. Wang, and H. J. Kimble, “Robust quantum gates on neutral atoms with cavity-assisted photon scattering,” Phys. Rev. A72, 032333 (2005). [CrossRef]
  51. Y. Wu and X. Yang, “Exact eigenstates for a class of models describing two-mode multiphoton processes,” Opt. Lett.28, 1793–1795 (2003). [CrossRef] [PubMed]
  52. J. H. Li and R. Yu, “Single-plasmon scattering grating using nanowire surface plasmon coupled to nanodiamond nitrogen-vacancy center,” Opt. Express19, 20991–21002 (2011). [CrossRef] [PubMed]
  53. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, 1997).
  54. D. Walls and G. Milburm, Quantum Optics (Springer, 1994).
  55. C. W. Gardiner and P. Zoller, Quantum Noise, 3rd ed. (Springer, 2004).
  56. L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett.92, 127902 (2004). [CrossRef] [PubMed]
  57. T. Pellizzari, “Quantum networking with optical fibres,” Phys. Rev. Lett.79, 5242–5245 (1997). [CrossRef]
  58. P. Neumann, R. Kolesov, V. Jacques, J. Beck, J. Tisler, A. Batalov, L. Rogers, N. B. Manson, G. Balasubramanian, F. Jelezko, and J. Wrachtrup, “Excited-state spectroscopy of single NV defects in diamond using optically detected magnetic resonance,” New J. Phys.11, 013017 (2009). [CrossRef]
  59. Q. Chen, W. L. Yang, M. Feng, and J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A83, 054305 (2011). [CrossRef]
  60. P. E. Barclay, K. M. Fu, C. Santori, and R. G. Beausoleil, “Hybrid photonic crystal cavity and waveguide for coupling to diamond NV-centers,” Opt. Express17, 9588–9601 (2009). [CrossRef] [PubMed]
  61. B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. I. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science319, 1062–1065 (2008). [CrossRef] [PubMed]
  62. C. Manolatou, M. J. Khan, S. Fan, Pierre R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron.35, 1322–1330 (1999). [CrossRef]
  63. E. Waks and J. Vuckovic, “Dipole induced transparency in drop-filter cavity-waveguide systems,” Phys. Rev. Lett.96,153601 (2006). [CrossRef] [PubMed]
  64. J. Pan, S. Sandhu, Y. Huo, M. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of an all-optical analogue to the superradiance effect in an on-chip photonic crystal resonator system,” Phys. Rev. B81, 041101 (2010). [CrossRef]
  65. J. Pan, Y. Huo, S. Sandhu, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Tuning the coherent interaction in an on-chip photonic-crystal waveguide-resonator system,” Appl. Phys. Lett.97, 101102 (2010). [CrossRef]
  66. Y. Huo, S. Sandhu, J. Pan, N. Stuhrmann, M. L. Povinelli, J. M. Kahn, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of two methods for controlling the group delay in a system with photonic-crystal resonators coupled to a waveguide,” Opt. Lett.36, 1482–1484 (2011). [CrossRef] [PubMed]
  67. D. Sridharan, R. Bose, H. Kim, G. S. Solomon, and E. Waks, “Attojoule all-optical switching with a single quantum dot,” arXiv: 1107.3751.
  68. R. Bose, D. Sridharan, G. Solomon, and E. Waks, “Observation of strong coupling through transmission modification of a cavity-coupled photonic crystal waveguide,” Opt. Express19, 5398–5409 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited