OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 15 — Jul. 16, 2012
  • pp: 16913–16925

Phase-contrast X-ray tomography using Teague’s method

Thomas W. Baillie, Timur E. Gureyev, Jelena A. Schmalz, and Konstantin M. Pavlov  »View Author Affiliations

Optics Express, Vol. 20, Issue 15, pp. 16913-16925 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1031 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate a variant of the reconstruction technique for the in-line X-ray phase-contrast tomography data. This technique uses a newly introduced quantity, which represents a particular combination of the real and imaginary parts of the complex refractive index n. This quantity coincides with the real part of (1-n) in the case of objects having negligible absorption. The advantage of the proposed approach is in the significantly simplified form of the reconstruction algorithm for the introduced quantity. As demonstrated by our numerical experiments, the newly introduced quantity can be predictably associated with a particular refractive index.

© 2012 OSA

OCIS Codes
(100.3190) Image processing : Inverse problems
(100.5070) Image processing : Phase retrieval
(100.6950) Image processing : Tomographic image processing
(340.7440) X-ray optics : X-ray imaging
(110.3010) Imaging systems : Image reconstruction techniques

ToC Category:
Image Processing

Original Manuscript: March 30, 2012
Revised Manuscript: July 1, 2012
Manuscript Accepted: July 3, 2012
Published: July 11, 2012

Virtual Issues
Vol. 7, Iss. 9 Virtual Journal for Biomedical Optics

Thomas W. Baillie, Timur E. Gureyev, Jelena A. Schmalz, and Konstantin M. Pavlov, "Phase-contrast X-ray tomography using Teague’s method," Opt. Express 20, 16913-16925 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. T. Herman, Image Reconstruction from Projections. The Fundamentals of Computerized Tomography (Academic Press, 1980).
  2. F. Natterer, The Mathematics of Computerized Tomography (Wiley, 1986).
  3. M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (Cambridge University Press, Cambridge, 1999).
  4. A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum.66(12), 5486–5492 (1995). [CrossRef]
  5. A. Momose, T. Takeda, and Y. Itai, “X-ray computed tomography for observing biological specimens and organic materials,” Rev. Sci. Instrum.66(2), 1434–1436 (1995). [CrossRef]
  6. S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature384(6607), 335–338 (1996). [CrossRef]
  7. T. Weitkamp, C. David, C. Kottler, O. Bunk, and F. Pfeiffer, “Tomography with grating interferometers at low-brilliance sources,” Proc. SPIE6318, 63180S, 63180S-10 (2006). [CrossRef]
  8. A. Momose, W. Yashiro, Y. Takeda, Y. Suzuki, and T. Hattori, “Phase tomography by X-ray Talbot interferometry for biological imaging,” Jpn. J. Appl. Phys.45(6A), 5254–5262 (2006). [CrossRef]
  9. F. A. Dilmanian, Z. Zhong, B. Ren, X. Y. Wu, L. D. Chapman, I. Orion, and W. C. Thomlinson, “Computed tomography of x-ray index of refraction using the diffraction enhanced imaging method,” Phys. Med. Biol.45(4), 933–946 (2000). [CrossRef] [PubMed]
  10. K. M. Pavlov, C. M. Kewish, J. R. Davis, and M. J. Morgan, “A variant on the geometrical optics approximation in diffraction enhanced tomography,” J. Phys. D Appl. Phys.34(10A), A168–A172 (2001). [CrossRef]
  11. C. Raven, A. Snigirev, I. Snigireva, P. Spanne, A. Souvorov, and V. Kohn, “Phase-contrast microtomography with coherent high-energy synchrotron x-rays,” Appl. Phys. Lett.69(13), 1826–1828 (1996). [CrossRef]
  12. P. Cloetens, M. Pateyron-Salome, J. Y. Buffiere, G. Peix, J. Baruchel, F. Peyrin, and M. Schlenker, “Observation of microstructure and damage in materials by phase sensitive radiography and tomography,” J. Appl. Phys.81(9), 5878–5886 (1997). [CrossRef]
  13. A. Barty, K. Nugent, A. Roberts, and D. Paganin, “Quantitative phase tomography,” Opt. Commun.175(4–6), 329–336 (2000). [CrossRef]
  14. S. C. Mayo, T. J. Davis, T. E. Gureyev, P. R. Miller, D. Paganin, A. Pogany, A. W. Stevenson, and S. W. Wilkins, “X-ray phase-contrast microscopy and microtomography,” Opt. Express11(19), 2289–2302 (2003). [CrossRef] [PubMed]
  15. M. A. Anastasio, D. Shi, F. De Carlo, and X. Pan, “Analytic image reconstruction in local phase-contrast tomography,” Phys. Med. Biol.49(1), 121–144 (2004). [CrossRef] [PubMed]
  16. E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun.1(4), 153–156 (1969). [CrossRef]
  17. G. Harding, J. M. Kosanetzky, and U. Neitzel, “Elastic scatter computed tomography,” Phys. Med. Biol.30(2), 183–186 (1985). [CrossRef] [PubMed]
  18. K. M. Pavlov, C. M. Kewish, J. R. Davis, and M. J. Morgan, “A new theoretical approach to x-ray diffraction tomography,” J. Phys. D Appl. Phys.33(13), 1596–1605 (2000). [CrossRef]
  19. G. Gbur and E. Wolf, “Diffraction tomography without phase information,” Opt. Lett.27(21), 1890–1892 (2002). [CrossRef] [PubMed]
  20. A. V. Bronnikov, “Theory of quantitative phase-contrast computed tomography,” J. Opt. Soc. Am. A19(3), 472–480 (2002). [CrossRef] [PubMed]
  21. T. E. Gureyev, D. M. Paganin, G. R. Myers, Ya. I. Nesterets, and S. W. Wilkins, “Phase-and-amplitude computer tomography,” Appl. Phys. Lett.89(3), 034102 (2006). [CrossRef]
  22. A. V. Bronnikov, “Reconstruction formulas in phase-contrast tomography,” Opt. Commun.171(4-6), 239–244 (1999). [CrossRef]
  23. M. R. Teague, “Deterministic phase retrieval: a Green's function solution,” J. Opt. Soc. Am.73(11), 1434–1441 (1983). [CrossRef]
  24. T. E. Gureyev and S. W. Wilkins, “On X-ray phase retrieval from polychromatic images,” Opt. Commun.147(4-6), 229–232 (1998). [CrossRef]
  25. M. A. Beltran, D. M. Paganin, K. Uesugi, and M. J. Kitchen, “2D and 3D X-ray phase retrieval of multi-material objects using a single defocus distance,” Opt. Express18(7), 6423–6436 (2010). [CrossRef] [PubMed]
  26. M. Langer, P. Cloetens, and F. Peyrin, “Regularization of phase retrieval with phase-attenuation duality prior for 3D holotomography,” IEEE Trans. Image Process.19(9), 2428–2436 (2010). [CrossRef] [PubMed]
  27. M. A. Beltran, D. M. Paganin, K. K. W. Siu, A. Fouras, S. B. Hooper, D. H. Reser, and M. J. Kitchen, “Interface-specific x-ray phase retrieval tomography of complex biological organs,” Phys. Med. Biol.56(23), 7353–7369 (2011). [CrossRef] [PubMed]
  28. M. Langer, P. Cloetens, A. Pacureanu, and F. Peyrin, “X-ray in-line phase tomography of multimaterial objects,” Opt. Lett.37(11), 2151–2153 (2012). [CrossRef] [PubMed]
  29. X. Guo, X. Liu, M. Gu, C. Ni, S. Huang, and B. Liu, “Polychromatic X-ray in-line phase-contrast tomography for soft tissue,” Europhys. Lett.98(1), 14001 (2012). [CrossRef]
  30. M. A. Anastasio, D. Shi, Y. Huang, and G. Gbur, “Image reconstruction in spherical-wave intensity diffraction tomography,” J. Opt. Soc. Am. A22(12), 2651–2661 (2005). [CrossRef] [PubMed]
  31. Y. Huang and M. A. Anastasio, “Statistically principled use of in-line measurements in intensity diffraction tomography,” J. Opt. Soc. Am. A24(3), 626–642 (2007). [CrossRef] [PubMed]
  32. D. Paganin and K. A. Nugent, “Noninterferometric phase imaging with partially coherent light,” Phys. Rev. Lett.80(12), 2586–2589 (1998). [CrossRef]
  33. T. E. Gureyev, D. M. Paganin, A. W. Stevenson, S. C. Mayo, and S. W. Wilkins, “Generalized eikonal of partially coherent beams and its use in quantitative imaging,” Phys. Rev. Lett.93(6), 068103 (2004). [CrossRef] [PubMed]
  34. G. R. Myers, S. C. Mayo, T. E. Gureyev, D. M. Paganin, and S. W. Wilkins, “Polychromatic cone-beam phase-contrast tomography,” Phys. Rev. A76(4), 045804 (2007). [CrossRef]
  35. J. A. Schmalz, T. E. Gureyev, D. M. Paganin, and K. M. Pavlov, “Phase retrieval using radiation and matter wave fields: Validity of Teague’s method for solution of the Transport of Intensity equation,” Phys. Rev. A84(2), 023808 (2011). [CrossRef]
  36. D. Paganin, T. E. Gureyev, S. C. Mayo, A. W. Stevenson, Y. I. Nesterets, and S. W. Wilkins, “X-ray omni microscopy,” J. Microsc.214(3), 315–327 (2004). [CrossRef] [PubMed]
  37. X. Wu, H. Liu, and A. Yan, “X-ray phase-attenuation duality and phase retrieval,” Opt. Lett.30(4), 379–381 (2005). [CrossRef] [PubMed]
  38. G. R. Myers, T. E. Gureyev, and D. M. Paganin, “Stability of phase-contrast tomography,” J. Opt. Soc. Am. A24(9), 2516–2526 (2007). [CrossRef] [PubMed]
  39. T. E. Gureyev, Y. Nesterets, D. Ternovski, D. Thompson, S. W. Wilkins, A. W. Stevenson, A. Sakellariou, and J. A. Taylor, “Toolbox for advanced X-ray image processing,” Proc. SPIE8141, 81410B, 81410B-14 (2011). [CrossRef]
  40. X-ray complex refraction coefficient, CSIRO. Retrieved March 15, 2012, from www.ts-imaging.net/Services/Simple/ICUtilXdata.aspx .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited