OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 15 — Jul. 16, 2012
  • pp: 16942–16954

Combined optical porosimetry and gas absorption spectroscopy in gas-filled porous media using diode-laser-based frequency domain photon migration

Liang Mei, Sune Svanberg, and Gabriel Somesfalean  »View Author Affiliations

Optics Express, Vol. 20, Issue 15, pp. 16942-16954 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1053 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A combination method of frequency domain photon migration (FDPM) and gas in scattering media absorption spectroscopy (GASMAS) is used for assessment of the mean optical path length (MOPL) and the gas absorption in gas-filled porous media, respectively. Polystyrene (PS) foams, with extremely high physical porosity, are utilized as sample materials for proof-of-principle demonstration. The optical porosity, defined as the ratio between the path length through the pores and the path length through the medium, is evaluated in PS foam and found consistent with the measured physical porosity. The method was also utilized for the study of balsa and spruce wood samples.

© 2012 OSA

OCIS Codes
(290.4210) Scattering : Multiple scattering
(300.1030) Spectroscopy : Absorption

ToC Category:

Original Manuscript: April 9, 2012
Revised Manuscript: May 26, 2012
Manuscript Accepted: May 27, 2012
Published: July 11, 2012

Virtual Issues
Vol. 7, Iss. 9 Virtual Journal for Biomedical Optics

Liang Mei, Sune Svanberg, and Gabriel Somesfalean, "Combined optical porosimetry and gas absorption spectroscopy in gas-filled porous media using diode-laser-based frequency domain photon migration," Opt. Express 20, 16942-16954 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. G. Daniel, K. L. McNesby, and A. W. Miziolek, “Application of tunable diode laser diagnostics for temperature and species concentration profiles of inhibited low-pressure flames,” Appl. Opt.35(21), 4018–4025 (1996). [CrossRef] [PubMed]
  2. A. G. Hendricks, U. Vandsburger, W. R. Saunders, and W. T. Baumann, “The use of tunable diode laser absorption spectroscopy for the measurement of flame dynamics,” Meas. Sci. Technol.17(1), 139–144 (2006). [CrossRef]
  3. H. Fischer, P. Bergamaschi, F. G. Wienhold, T. Zenker, and G. W. Harris, “Development and application of multi-laser TDLAS-instruments for groundbased, shipboard and airborne measurements of trace gas species in the atmosphere,” SPIE2834, 130–141 (1996). [CrossRef]
  4. G. Somesfalean, J. Alnis, U. Gustafsson, H. Edner, and S. Svanberg, “Long-path monitoring of NO2 with a 635 nm diode laser using frequency-modulation spectroscopy,” Appl. Opt.44(24), 5148–5151 (2005). [CrossRef] [PubMed]
  5. A. Puiu, G. Giubileo, and C. Bangrazi, “Laser sensors for trace gases in human breath,” Int. J. Environ. an. Ch.85(12-13), 1001–1012 (2005). [CrossRef]
  6. P. C. Kamat, C. B. Roller, K. Namjou, J. D. Jeffers, A. Faramarzalian, R. Salas, and P. J. McCann, “Measurement of acetaldehyde in exhaled breath using a laser absorption spectrometer,” Appl. Opt.46(19), 3969–3975 (2007). [CrossRef] [PubMed]
  7. P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta [A]54(2), 197–236 (1998). [CrossRef]
  8. M. Sjöholm, G. Somesfalean, J. Alnis, S. Andersson-Engels, and S. Svanberg, “Analysis of gas dispersed in scattering media,” Opt. Lett.26(1), 16–18 (2001). [CrossRef] [PubMed]
  9. M. Lewander, Z. G. Guan, L. Persson, A. Olsson, and S. Svanberg, “Food monitoring based on diode laser gas spectroscopy,” Appl. Phys. B93(2-3), 619–625 (2008). [CrossRef]
  10. M. Andersson, L. Persson, M. Sjöholm, and S. Svanberg, “Spectroscopic studies of wood-drying processes,” Opt. Express14(8), 3641–3653 (2006). [CrossRef] [PubMed]
  11. M. Lewander, Z. G. Guan, K. Svanberg, S. Svanberg, and T. Svensson, “Clinical system for non-invasive in situ monitoring of gases in the human paranasal sinuses,” Opt. Express17(13), 10849–10863 (2009). [CrossRef] [PubMed]
  12. T. Svensson and Z. J. Shen, “Laser spectroscopy of gas confined in nanoporous materials,” Appl. Phys. Lett.96(2), 021107 (2010). [CrossRef]
  13. T. Svensson, M. Lewander, and S. Svanberg, “Laser absorption spectroscopy of water vapor confined in nanoporous alumina: wall collision line broadening and gas diffusion dynamics,” Opt. Express18(16), 16460–16473 (2010). [CrossRef] [PubMed]
  14. W. Becker, Advanced time-correlated single photon counting techniques. (Springer-Verlag, Berlin, Heidelgerg, 2005).
  15. T. Svensson, E. Alerstam, D. Khoptyar, J. Johansson, S. Folestad, and S. Andersson-Engels, “Near-infrared photon time-of-flight spectroscopy of turbid materials up to 1400 nm,” Rev. Sci. Instrum.80(6), 063105 (2009). [CrossRef] [PubMed]
  16. G. Somesfalean, M. Sjöholm, J. Alnis, C. Klinteberg, S. Andersson-Engels, and S. Svanberg, “Concentration measurement of gas embedded in scattering media by employing absorption and time-resolved laser spectroscopy,” Appl. Opt.41(18), 3538–3544 (2002). [CrossRef] [PubMed]
  17. T. Svensson, E. Alerstam, J. Johansson, and S. Andersson-Engels, “Optical porosimetry and investigations of the porosity experienced by light interacting with porous media,” Opt. Lett.35(11), 1740–1742 (2010). [CrossRef] [PubMed]
  18. T. Svensson, M. Andersson, L. Rippe, S. Svanberg, S. Andersson-Engels, J. Johansson, and S. Folestad, “VCSEL-based oxygen spectroscopy for structural analysis of pharmaceutical solids,” Appl. Phys. B90(2), 345–354 (2008). [CrossRef]
  19. T. Svensson, E. Adolfsson, M. Lewander, C. T. Xu, and S. Svanberg, “Disordered, strongly scattering porous materials as miniature multipass gas cells,” Phys. Rev. Lett.107(14), 143901 (2011). [CrossRef] [PubMed]
  20. L. Mei, H. Jayaweera, P. Lundin, S. Svanberg, and G. Somesfalean, “Gas spectroscopy and optical path-length assessment in scattering media using a frequency-modulated continuous-wave diode laser,” Opt. Lett.36(16), 3036–3038 (2011). [CrossRef] [PubMed]
  21. J. K. Link, “Measurement of radiative lifetimes of first excited states of Na, K, Rb, and Cs by means of phase-shift method,” J. Opt. Soc. Am.56(9), 1195–1199 (1966). [CrossRef]
  22. G. Jönsson, C. Levinson, and S. Svanberg, “Natural radiative lifetimes and Stark-shift parameters in the 4p2 configuration in Ca I,” Phys. Scr.30(1), 65–69 (1984). [CrossRef]
  23. B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 661–668 (1997). [CrossRef] [PubMed]
  24. S. J. Erickson and A. Godavarty, “Hand-held based near-infrared optical imaging devices: A review,” Med. Eng. Phys.31(5), 495–509 (2009). [CrossRef] [PubMed]
  25. Z. G. Sun, Y. Q. Huang, and E. M. Sevick-Muraca, “Precise analysis of frequency domain photon migration measurement for characterization of concentrated colloidal suspensions,” Rev. Sci. Instrum.73(2), 383–393 (2002). [CrossRef]
  26. S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue - temporal and frequency analysis,” Phys. Med. Biol.37(7), 1531–1560 (1992). [CrossRef] [PubMed]
  27. R. Coquard and D. Baillis, “Modeling of heat transfer in low-density EPS foams,” J. Heat Trans.128(6), 538–549 (2006). [CrossRef]
  28. J. Alnis, B. Anderson, M. Sjöholm, G. Somesfalean, and S. Svanberg, “Laser spectroscopy of free molecular oxygen dispersed in wood materials,” Appl. Phys. B77, 691–695 (2003). [CrossRef]
  29. B. Chance, M. Cope, E. Gratton, N. Ramanujam, and B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum.69(10), 3457–3481 (1998). [CrossRef]
  30. Y. S. Yang, H. L. Liu, X. D. Li, and B. Chance, “Low-cost frequency-domain photon migration instrument for tissue spectroscopy, oximetry, and imaging,” Opt. Eng.36(5), 1562–1569 (1997). [CrossRef]
  31. P. Kluczynski and O. Axner, “Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals,” Appl. Opt.38(27), 5803–5815 (1999). [CrossRef] [PubMed]
  32. T. Fernholz, H. Teichert, and V. Ebert, “Digital, phase-sensitive detection for in situ diode-laser spectroscopy under rapidly changing transmission conditions,” Appl. Phys. B75(2-3), 229–236 (2002). [CrossRef]
  33. M. Andersson, L. Persson, T. Svensson, and S. Svanberg, “Flexible lock-in detection system based on synchronized computer plug-in boards applied in sensitive gas spectroscopy,” Rev. Sci. Instrum.78(11), 113107 (2007). [CrossRef] [PubMed]
  34. M. Yamauchi, Y. Yamada, and Y. Hasegawa, “Frequency-domain measurements of diffusing photon propagation in solid phantoms,” Opt. Rev.4(5), 620–621 (1997). [CrossRef]
  35. D. Contini, F. Martelli, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory,” Appl. Opt.36(19), 4587–4599 (1997). [CrossRef] [PubMed]
  36. L. Mei, P. Lundin, S. Andersson-Engels, S. Svanberg, and G. Somesfalean, “Characterization and validation of the frequency-modulated continuous-wave technique for assessment of photon migration in solid scattering media,” Appl. Phys. B DOI 10.1007/s00340-00012-05103-00349 (2012).
  37. N. Ramanujam, C. Du, H. Y. Ma, and B. Chance, “Sources of phase noise in homodyne and heterodyne phase modulation devices used for tissue oximetry studies,” Rev. Sci. Instrum.69(8), 3042–3054 (1998). [CrossRef]
  38. K. Alford and Y. Wickramasinghe, “Phase-amplitude crosstalk in intensity modulated near infrared spectroscopy,” Rev. Sci. Instrum.71(5), 2191–2195 (2000). [CrossRef]
  39. S. P. Morgan and K. Y. Yong, “Elimination of amplitude-phase crosstalk in frequency domain near-infrared spectroscopy,” Rev. Sci. Instrum.72(4), 1984–1987 (2001). [CrossRef]
  40. J. Carlsson, P. Hellentin, L. Malmqvist, A. Persson, W. Persson, and C. G. Wahlström, “Time-resolved studies of light propagation in paper,” Appl. Opt.34(9), 1528–1535 (1995). [CrossRef] [PubMed]
  41. S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater.29(11), 1481–1490 (2007). [CrossRef]
  42. J. M. Dinwoodie, Timber; Its Nature and Behaviour 2 ed. (Spon Press, 2000).
  43. C. Roger, Pettersen, “The chemical composition of wood,” in The Chemistry of Solid Wood edited by Roger Rowell (American Chemical Society, 1984), 207, 57–126.
  44. Z. C. Pu, “Polystyrene,” in Polymer Data Handbook edited by James E. Mark (Oxford University, New York, 2009).
  45. A. Da Silva and S. Kyriakides, “Compressive response and failure of balsa wood,” Int. J. Solids Struct.44(25-26), 8685–8717 (2007). [CrossRef]
  46. J. G. Rivas, D. H. Dau, A. Imhof, R. Sprik, B. P. J. Bret, P. M. Johnson, T. W. Hijmans, and A. Lagendijk, “Experimental determination of the effective refractive index in strongly scattering media,” Opt. Commun.220(1-3), 17–21 (2003). [CrossRef]
  47. K. Yoshitani, M. Kawaguchi, T. Okuno, T. Kanoda, Y. Ohnishi, M. Kuro, and M. Nishizawa, “Measurements of optical pathlength using phase-resolved spectroscopy in patients undergoing cardiopulmonary bypass,” Anesth. Analg.104(2), 341–346 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited