OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 15 — Jul. 16, 2012
  • pp: 16955–16967

Nonmagnetic electromagnetic transparent wall realized by a metal-dielectric multilayer structure

Zhong Lei Mei, Yan Li Xu, Jing Bai, and Tie Jun Cui  »View Author Affiliations


Optics Express, Vol. 20, Issue 15, pp. 16955-16967 (2012)
http://dx.doi.org/10.1364/OE.20.016955


View Full Text Article

Enhanced HTML    Acrobat PDF (2743 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a nonmagnetic electromagnetic transparent wall (EMTW) using the principle of total transmission and phase compensation. The device consists of two or more nonmagnetic stacked anisotropic slabs. With proper design of the constitutive tensors and relative thicknesses of each slab, EMTW is achieved which is independent of the incident angle of striking EM waves. The realization of the anisotropic slabs and furthermore EMTW in the optical range is mimicked using a metal-dielectric nano-structured system with alternating Na3AlF6-Ag layers. Compared to the magnetic version, the new design makes a major step forward and provides a practical path to experimental demonstration of EMTW. The proposed structure has potential applications in the antireflection coatings, microwave absorbing materials, and high-performance radomes.

© 2012 OSA

OCIS Codes
(230.4170) Optical devices : Multilayers
(260.2110) Physical optics : Electromagnetic optics
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: May 1, 2012
Revised Manuscript: July 6, 2012
Manuscript Accepted: July 6, 2012
Published: July 11, 2012

Citation
Zhong Lei Mei, Yan Li Xu, Jing Bai, and Tie Jun Cui, "Nonmagnetic electromagnetic transparent wall realized by a metal-dielectric multilayer structure," Opt. Express 20, 16955-16967 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-15-16955


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292(5514), 77–79 (2001). [CrossRef] [PubMed]
  2. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science312(5775), 892–894 (2006). [CrossRef] [PubMed]
  3. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics1(1), 41–48 (2007). [CrossRef]
  4. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455(7211), 376–379 (2008). [CrossRef] [PubMed]
  5. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999). [CrossRef]
  6. B. J. Arritt, D. R. Smith, and T. Khraishi, “Equivalent circuit analysis of metamaterial strain-dependent effective medium parameters,” J. Appl. Phys.109(7), 073512 (2011). [CrossRef]
  7. V. D. Lam, J. B. Kim, S. J. Lee, and Y. P. Lee, “Left-handed behavior of combined and fishnet structures,” J. Appl. Phys.103(3), 033107 (2008). [CrossRef]
  8. A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater.6(12), 946–950 (2007). [CrossRef] [PubMed]
  9. B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B74(11), 115116 (2006). [CrossRef]
  10. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express14(18), 8247–8256 (2006). [CrossRef] [PubMed]
  11. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007). [CrossRef] [PubMed]
  12. X. F. Xu, Y. J. Feng, Y. Hao, J. M. Zhao, and T. Jiang, “Infrared carpet cloak designed with uniform silicon grating structure,” Appl. Phys. Lett.95(18), 184102 (2009). [CrossRef]
  13. H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, “Development of optical hyperlens for imaging below the diffraction limit,” Opt. Express15(24), 15886–15891 (2007). [CrossRef] [PubMed]
  14. H. Y. Chen and C. T. Chan, “Transformation media that rotate electromagnetic fields,” Appl. Phys. Lett.90(24), 241105 (2007). [CrossRef]
  15. S. Xi, H. S. Chen, B. Wu, and J. A. Kong, “One-directional perfect cloak created with homogeneous material,” IEEE Microw. Wireless Compon. Lett.19(3), 131–133 (2009). [CrossRef]
  16. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305(5685), 788–792 (2004). [CrossRef] [PubMed]
  17. Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev.40(5), 2494–2507 (2011). [CrossRef] [PubMed]
  18. C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics5, 523–530 (2011).
  19. Z. L. Mei, T. M. Niu, J. Bai, and T. J. Cui, “Design of a one-dimensional electromagnetic transparent wall,” J. Opt. Soc. Am. A27(10), 2237–2243 (2010). [CrossRef] [PubMed]
  20. Y. Zhang, B. Fluegel, and A. Mascarenhas, “Total negative refraction in real crystals for ballistic electrons and light,” Phys. Rev. Lett.91(15), 157404 (2003). [CrossRef] [PubMed]
  21. Z. Liu, Z. Lin, and S. T. Chui, “Negative refraction and omnidirectional total transmission at a planar interface associated with a uniaxial medium,” Phys. Rev. B69(11), 115402 (2004). [CrossRef]
  22. Y. Huang, Y. Feng, and T. Jiang, “Electromagnetic cloaking by layered structure of homogeneous isotropic materials,” Opt. Express15(18), 11133–11141 (2007). [CrossRef] [PubMed]
  23. H. Chen and C. T. Chan, “Electromagnetic wave manipulation by layered systems using the transformation media concept,” Phys. Rev. B78(5), 054204 (2008). [CrossRef]
  24. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1980).
  25. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  26. J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett.93(25), 251903 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited