OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 15 — Jul. 16, 2012
  • pp: 16981–16991

Superenhanced three-dimensional confinement of light by compound metal-dielectric microspheres

Yulong Ku, Cuifang Kuang, Xiang Hao, Yi Xue, Haifeng Li, and Xu Liu  »View Author Affiliations


Optics Express, Vol. 20, Issue 15, pp. 16981-16991 (2012)
http://dx.doi.org/10.1364/OE.20.016981


View Full Text Article

Enhanced HTML    Acrobat PDF (1197 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Dielectric microspheres are capable of confining light in a three dimensional region of sub-wavelength dimensions in appropriate illuminating conditions. A compound set of metal-dielectric microspheres permitting light confined in an effective volume as small as 0.095 (λ/n)3 is shown, together with a strong focusing effect when the spheres are illuminated by focused radially polarized beams. This strong confinement arises from the surface plasmon hotspots on the rear side of the metallic microsphere induced by the so called photonic nanojets of the dielectric microsphere, and the compound set has been optimized to achieve the best result. Full width at half maximum (FWHM) could be optimized to 73nm (~0.11λ) in axial direction and 146nm (~0.23λ) in transversal direction separately. The beam shaped in that way is suitable for applications requiring small effective volume and/or strong peak intensities.

© 2012 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.5430) Physical optics : Polarization
(290.5850) Scattering : Scattering, particles

ToC Category:
Optics at Surfaces

History
Original Manuscript: May 11, 2012
Revised Manuscript: June 25, 2012
Manuscript Accepted: July 8, 2012
Published: July 11, 2012

Citation
Yulong Ku, Cuifang Kuang, Xiang Hao, Yi Xue, Haifeng Li, and Xu Liu, "Superenhanced three-dimensional confinement of light by compound metal-dielectric microspheres," Opt. Express 20, 16981-16991 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-15-16981


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Z. B. Wang, N. Joseph, L. Li, and B. S. Luk'yanchuk, “A review of optical near-fields in particle/tip-assisted laser nanofabrication,” P I Mech Eng C-J. Mec.224, 1113–1127 (2010).
  2. A. Khan, Z. Wang, M. A. Sheikh, D. J. Whitehead, and L. Li, “Parallel near-field optical micro/nanopatterning on curved surfaces by transported micro-particle lens arrays,” J. Phys. D Appl. Phys.43(30), 305302 (2010). [CrossRef]
  3. M. Mosbacher, H. J. Münzer, J. Zimmermann, J. Solis, J. Boneberg, and P. Leiderer, “Optical field enhancement effects in laser-assisted particle removal,” Appl. Phys., A Mater. Sci. Process.72(1), 41–44 (2001). [CrossRef]
  4. B. S. Luk‘yanchuk, N. Arnold, S. M. Huang, Z. B. Wang, and M. H. Hong, “Three-dimensional effects in dry laser cleaning,” Appl. Phys., A Mater. Sci. Process.77, 209–215 (2003).
  5. J. Wenger and H. Rigneault, “Photonic methods to enhance fluorescence correlation spectroscopy and single molecule fluorescence detection,” Int. J. Mol. Sci.11(1), 206–221 (2010). [CrossRef] [PubMed]
  6. H. Aouani, F. Deiss, J. Wenger, P. Ferrand, N. Sojic, and H. Rigneault, “Optical-fiber-microsphere for remote fluorescence correlation spectroscopy,” Opt. Express17(21), 19085–19092 (2009). [CrossRef] [PubMed]
  7. D. Gérard, J. Wenger, A. Devilez, D. Gachet, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence,” Opt. Express16(19), 15297–15303 (2008). [CrossRef] [PubMed]
  8. A. Darafsheh, A. Fardad, N. M. Fried, A. N. Antoszyk, H. S. Ying, and V. N. Astratov, “Contact focusing multimodal microprobes for ultraprecise laser tissue surgery,” Opt. Express19(4), 3440–3448 (2011). [CrossRef] [PubMed]
  9. S. C. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojet-enabled optical data storage,” Opt. Express16(18), 13713–13719 (2008). [CrossRef] [PubMed]
  10. J.-C. Weeber, A. Bouhelier, G. Colas des Francs, L. Markey, and A. Dereux, “Submicrometer in-plane integrated surface plasmon cavities,” Nano Lett.7(5), 1352–1359 (2007). [CrossRef] [PubMed]
  11. H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, “Enhancement of Single-Molecule Fluorescence Detection in Subwavelength Apertures,” Phys. Rev. Lett.95(11), 117401 (2005). [CrossRef] [PubMed]
  12. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96(11), 113002 (2006). [CrossRef] [PubMed]
  13. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced raman scattering,” Science275(5303), 1102–1106 (1997). [CrossRef] [PubMed]
  14. M. S. Kim, T. Scharf, S. Mühlig, C. Rockstuhl, and H. P. Herzig, “Engineering photonic nanojets,” Opt. Express19(11), 10206–10220 (2011). [CrossRef] [PubMed]
  15. C. Kuang, Y. Liu, X. Hao, D. Luo, and X. Liu, “Creating attoliter detection volume by microsphere photonic nanojet and fluorescence depletion,” Opt. Commun.285(4), 402–406 (2012). [CrossRef]
  16. Y. Liu, C. F. Kuang, and Z. H. Ding, “Strong confinement of two-photon excitation field by photonic nanojet with radial polarization illumination,” Opt. Commun.284(19), 4824–4827 (2011). [CrossRef]
  17. A. Devilez, N. Bonod, J. Wenger, D. Gérard, B. Stout, H. Rigneault, and E. Popov, “Three-dimensional subwavelength confinement of light with dielectric microspheres,” Opt. Express17(4), 2089–2094 (2009). [CrossRef] [PubMed]
  18. A. Pikulin, A. Afanasiev, N. Agareva, A. P. Alexandrov, V. Bredikhin, and N. Bityurin, “Effects of spherical mode coupling on near-field focusing by clusters of dielectric microspheres,” Opt. Express20(8), 9052–9057 (2012). [CrossRef] [PubMed]
  19. T. T. Wang, C. F. Kuang, X. A. Hao, and X. Liu, “Subwavelength focusing by a microsphere array,” J. Opt.13(3), 035702 (2011). [CrossRef]
  20. Y. E. Geints, E. K. Panina, and A. A. Zemlyanov, “Control over parameters of photonic-nanojets of dielectric microspheres,” Opt. Commun.283(23), 4775–4781 (2010). [CrossRef]
  21. S. C. Kong, A. Taflove, and V. Backman, “Quasi one-dimensional light beam generated by a graded-index microsphere,” Opt. Express17(5), 3722–3731 (2009). [CrossRef] [PubMed]
  22. C.-Y. Liu, “Superenhanced photonic nanojet by core-shell microcylinders,” Phys. Lett. A376(23), 1856–1860 (2012). [CrossRef]
  23. A. Devilez, J. Wenger, B. Stout, and N. Bonod, “Transverse and longitudinal confinement of photonic nanojets by compound dielectric microspheres,” Proc. SPIE7393, 73930E, 73930E-9 (2009). [CrossRef]
  24. X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express13(2), 526–533 (2005). [CrossRef] [PubMed]
  25. R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett.77(21), 3322–3324 (2000). [CrossRef]
  26. G. D. Valle and S. Longhi, “Geometric potential for plasmon polaritons on curved surfaces,” J. Phys. At. Mol. Opt. Phys.43(5), 051002 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited