OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 15 — Jul. 16, 2012
  • pp: 16992–17000

Analysis of hybrid plasmonic-photonic crystal structures using perturbation theory

Ishita Mukherjee and Reuven Gordon  »View Author Affiliations

Optics Express, Vol. 20, Issue 15, pp. 16992-17000 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (913 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A perturbation theory approach for the analysis of hybrid plasmonic- photonic crystal structures is presented. This theory allows for accurate calculation of the resonance frequency shift and quality factor change when introducing a resonant plasmonic structure into a photonic crystal microcavity. An example calculation is shown, agreeing to within 5% with comprehensive finite difference time domain simulations but taking an order of magnitude less time. This theoretical approach overcomes the challenge of poor scaling in computations with hybrid plasmonic-photonic crystal structures, allowing for rapid design optimization in such hybrid geometries.

© 2012 OSA

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(230.5298) Optical devices : Photonic crystals
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Photonic Crystals

Original Manuscript: May 15, 2012
Revised Manuscript: June 29, 2012
Manuscript Accepted: July 3, 2012
Published: July 11, 2012

Ishita Mukherjee and Reuven Gordon, "Analysis of hybrid plasmonic-photonic crystal structures using perturbation theory," Opt. Express 20, 16992-17000 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003). [CrossRef]
  2. S. Hughes and P. Yao, “Theory of quantum light emission from strongly-coupled single quantum dot photonic-crystal cavity system,” Opt. Express17(5), 3322–3330 (2009). [CrossRef]
  3. S. Hughes, “Coupled cavity QED using planar photonic crystals,” Phys. Rev. Lett.98(8), 083603 (2007). [CrossRef]
  4. H. Ryu, M. Notomi, and Y. Lee, “High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities,” Appl. Phys. Lett.83(21), 4294–4296 (2003). [CrossRef]
  5. S. A. Maier, “Effective mode volume of nanoscale plasmon cavities,” Opt. Quantum Electron.38(1-3), 257–267 (2006). [CrossRef]
  6. S. A. Maier, “Plasmonics: metal nanostructures for subwavelength photonic devices,” IEEE J. Sel. Top. Quantum Electron.12(6), 1214–1220 (2006). [CrossRef]
  7. S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys.98(1), 011101 (2005). [CrossRef]
  8. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006). [CrossRef]
  9. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010). [CrossRef]
  10. Y. X. Ni, D. L. Gao, Z. F. Sang, L. Gao, and C. W. Qiu, “Influence of spherical anisotropy on the optical properties of plasmon resonant metallic nanoparticles,” Appl. Phys., A Mater. Sci. Process.102(3), 673–679 (2011). [CrossRef]
  11. M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett.10(3), 891–895 (2010). [CrossRef]
  12. F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic photonic nanodevice for label free detection of a few molecules,” Nano Lett.8(8), 2321–2327 (2008). [CrossRef]
  13. P. E. Barclay, K. M. Fu, C. Santori, and R. G. Beausoleil, “Hybrid photonic crystal cavity and waveguide for coupling to diamond NV centers,” Opt. Express17(12), 9588–9601 (2009). [CrossRef]
  14. C. Grillet, C. Monat, C. L. Smith, B. L. Eggleton, D. J. Moss, S. Frédérick, D. Dalacu, P. J. Poole, J. Lapointe, G. Aers, and R. L. Williams, “Nanowire coupling to photonic crystal nanocavities for single photon sources,” Opt. Express15(3), 1267–1276 (2007). [CrossRef]
  15. I. Mukherjee, G. Hajisalem, and R. Gordon, “One step Integration of metal nanoparticles in photonic crystal nanobeam cavity,” Opt. Express19(23), 22462–22469 (2011). [CrossRef]
  16. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and E. F. Schubert, “High extraction efficiency of spontaneous emission from slabs of photonic crystals,” Phys. Rev. Lett.78(17), 3294–3297 (1997). [CrossRef]
  17. M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient sources of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett.89(23), 233602 (2002). [CrossRef]
  18. M. Kim, S. H. Lee, M. Choi, B. Ahn, N. Park, Y. H. Lee, and B. Min, “Low-loss surface-plasmonic nanobeam cavities,” Opt. Express18(11), 11089–11096 (2010). [CrossRef]
  19. M. W. McCutcheon and M. Loncar, “Design of a silicon nitride photonic crystal cavity with a quality factor of one million for coupling to a diamond nanocrystal,” Opt. Express16(23), 19136–19144 (2008). [CrossRef]
  20. Y. Liu, Z. Yang, Z. Liang, and L. Qi, “A memory efficient strategy for FDTD implementation applied to photonic crystal problems,” Prog. Electromagn. Res.3, 374–378 (2007).
  21. G. D. Kondylis, F. D. Flaviis, G. J. Pottie, and T. Itoh, “A memory efficient formulation of the finite difference time domain method for the solution of Maxwell’s equations,” IEEE Trans. Microw. Theory Tech.49(7), 1310–1320 (2001). [CrossRef]
  22. S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.65(6), 066611 (2002). [CrossRef]
  23. A. Kumar, K. Thyagarajan, and A. K. Ghatak, “Analysis of rectangular-core dielectric waveguides: an accurate perturbation approach,” Opt. Lett.8(1), 63–65 (1983). [CrossRef]
  24. A. Parkash, J. K. Vaid, and A. Mansingh, “Measurement of dielectric parameters at microwave frequencies by cavity-perturbation technique,” IEEE Trans. Microw. Theory Tech.27(9), 791–795 (1979). [CrossRef]
  25. M. Lohmeyer, N. Bahlmann, and P. Hertel, “Geometry tolerance estimation for rectangular dielectric waveguide devices by means of perturbation theory,” Opt. Commun.163(1-3), 86–94 (1999). [CrossRef]
  26. A. Morand, K. Phan-Huy, Y. Desieres, and P. Benech, “Analytical study of the microdisk’s resonant modes coupling with a waveguide based on the perturbation theory,” J. Lightwave Technol.22(3), 827–832 (2004). [CrossRef]
  27. M. Soljačić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(5), 055601 (2002). [CrossRef]
  28. L. Lalouat, B. Cluzel, P. Velha, E. Picard, D. Peyrade, J. P. Hugonin, P. Lalanne, E. Hadji, and F. de Fornel, “Near-field interactions between a subwavelength tip and a small-volume photonic-crystal nanocavity,” Phys. Rev. B76(4), 041102 (2007). [CrossRef]
  29. R. A. Waldron, Theory of Waveguides and Cavities (Maclaren & Sons, 1967).
  30. H. A. Haus, Waves and Fields in Optoelectronics (Prentice Hall Inc., 1984).
  31. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  32. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, Inc., 1983).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited