OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 15 — Jul. 16, 2012
  • pp: 17001–17009

A comparison between in-field and in-laboratory 50 km ultralong Erbium-doped fiber lasers actively mode-locked

Lúcia A. M. Saito and E. A. Thoroh de Souza  »View Author Affiliations

Optics Express, Vol. 20, Issue 15, pp. 17001-17009 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1685 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a comparison between an in-field and in-laboratory 50 km ultralong Erbium fiber lasers actively mode-locked with repetition rate varying from 1 to 10 GHz generating pulses from 35.2 to 68.7 ps. The pulse widths generated at higher frequencies are in agreement with Kuizenga-Siegman theory. However, for lower frequencies the pulses have higher intracavity peak power which allows the soliton effect to take place. Depending on the pump power level, the repetition rate and the cavity length both lasers can operate in active mode-locking or under the influence of the soliton regime that locks the pulse duration according to the dispersion and cavity length. Due to the soliton robustness, this condition eliminates most of the environmental influence in the in-field mode-locking regime and makes both lasers very similar.

© 2012 OSA

OCIS Codes
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(140.3500) Lasers and laser optics : Lasers, erbium
(140.3510) Lasers and laser optics : Lasers, fiber
(140.3560) Lasers and laser optics : Lasers, ring
(140.4050) Lasers and laser optics : Mode-locked lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: May 15, 2012
Revised Manuscript: June 18, 2012
Manuscript Accepted: June 28, 2012
Published: July 11, 2012

Lúcia A. M. Saito and E. A. Thoroh de Souza, "A comparison between in-field and in-laboratory 50 km ultralong Erbium-doped fiber lasers actively mode-locked," Opt. Express 20, 17001-17009 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. B. Desurvire, “Capacity demand and technology challenges for lightwave systems in the next two decades,” J. Lightwave Technol.24(12), 4697–4710 (2006). [CrossRef]
  2. M. Nakazawa, M. Tokuda, and N. Uchida, “Continuous-wave laser oscillation with an ultralong optical-fiber resonator,” J. Opt. Soc. Am.72(10), 1338–1344 (1982). [CrossRef]
  3. J. D. Ania-Castañón, “Quasi-lossless transmission using second-order Raman amplification and fibre Bragg gratings,” Opt. Express12(19), 4372–4377 (2004). [CrossRef] [PubMed]
  4. T. J. Ellingham, J. D. Ania-Castañón, R. Ibbotson, X. Chen, L. Zhang, and S. K. Turitsyn, “Quasi-Lossless Optical Links for Broad-Band Transmission and Data Processing,” IEEE Photon. Technol. Lett.18(1), 268–270 (2006). [CrossRef]
  5. S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270-km ultralong Raman fiber laser,” Phys. Rev. Lett.103(13), 133901 (2009). [CrossRef] [PubMed]
  6. S. A. Babin, V. Karalekas, P. Harper, E. V. Podivilov, V. K. Mezentsev, J. D. Ania-Castañón, and S. K. Turitsyn, “Experimental demonstration of mode structure in ultralong Raman fiber lasers,” Opt. Lett.32(9), 1135–1137 (2007). [CrossRef] [PubMed]
  7. V. Karalekas, J. D. Ania-Castañón, P. Harper, S. A. Babin, E. V. Podivilov, and S. K. Turitsyn, “Impact of nonlinear spectral broadening in ultra-long Raman fibre lasers,” Opt. Express15(25), 16690–16695 (2007). [CrossRef] [PubMed]
  8. B. Fischer, B. Vodonos, S. Atkins, and A. Bekker, “Experimental demonstration of localization in the frequency domain of mode-locked lasers with dispersion,” Opt. Lett.27(12), 1061–1063 (2002). [CrossRef] [PubMed]
  9. J. Scheuer and A. Yariv, “Giant fiber lasers: A new paradigm for secure key distribution,” Phys. Rev. Lett.97(14), 140502 (2006). [CrossRef] [PubMed]
  10. A. Zadok, J. Scheuer, J. Sendowski, and A. Yariv, “Secure key generation using an ultra-long fiber laser: transient analysis and experiment,” Opt. Express16(21), 16680–16690 (2008). [CrossRef] [PubMed]
  11. O. Kotlicki and J. Scheuer, “Secure key distribution over a 200 km long link employing a novel Ultra-long Fiber Lasers (UFL) scheme,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2010), paper ATuA4.
  12. H. G. Rosa and E. A. de Souza, “58 kHz Ultra-low Repetition Rate Ultralong Erbium-Doped Fiber Laser Mode-Locked by Carbon Nanotubes,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2011), paper JWA29.
  13. L. A. M. Saito and E. A. Thoroh de Souza, “Identifying the mechanisms of pulse formation and evolution in actively mode-locked Erbium fiber lasers with meters and kilometers-long,” Opt. Express (Submitted for publication).
  14. L. A. M. Saito, M. A. Romero, and E. A. Souza, “48.8 km Ultralong Erbium fiber laser in active mode-locking operation,” Opt. Rev.17(4), 385–387 (2010). [CrossRef]
  15. E. S. Boncristiano, L. A. M. Saito, and E. A. De Souza, “396 fs pulse from an asynchronous mode-locked Erbium fiber laser with 2.5-12 GHz repetition rate,” Microw. Opt. Technol. Lett.50(11), 2994–2996 (2008). [CrossRef]
  16. M. Alcon-Camas, A. E. El-Taher, H. Wang, P. Harper, V. Karalekas, J. A. Harrison, and J.-D. Ania-Castañón, “Long-distance soliton transmission through ultralong fiber lasers,” Opt. Lett.34(20), 3104–3106 (2009). [CrossRef] [PubMed]
  17. D. J. Kuizenga and A. E. Siegman, “FM and AM mode locking of the homogeneous laser - Part I: Theory,” IEEE J. Quantum Electron.6(11), 694–708 (1970). [CrossRef]
  18. M. Silva, T. C. Carvalho, R. M. Silveira, G. M. Ferreira, W. V. Ruggiero, H. L. Fragnito, H. Waldmann, C. Ruggiero, and L. F. Lopez, “Fiber-based testbed architecture enabling advanced experimental research,” in 2nd International Conference on Testbeds and Research Infrastructures for the Development of Networks & Communities, IEEE, 246–253 (2006).
  19. S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett.28(8), 806–807 (1992). [CrossRef]
  20. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press 2007).
  21. L. F. Mollenauer, R. H. Stolen, J. P. Gordon, and W. J. Tomlinson, “Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers,” Opt. Lett.8(5), 289–291 (1983). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited