OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 15 — Jul. 16, 2012
  • pp: 17059–17064

Polarization independent VOA based on dielectrically stretched liquid crystal droplet

Su Xu, Hongwen Ren, Jie Sun, and Shin-Tson Wu  »View Author Affiliations

Optics Express, Vol. 20, Issue 15, pp. 17059-17064 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1181 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A polarization independent variable optical attenuator (VOA) based on a dielectrically stretched liquid crystal (LC) droplet is demonstrated. In the voltage-off state, the proposed VOA has the smallest attenuation. As voltage increases, the LC droplet is stretched by a dielectrophoretic force, which gradually deflects the beam leading to an increased attenuation. Such a VOA can cover the entire C-Band. At λ = 1550 nm, the following results are obtained: dynamic range ~32 dB, insertion loss ~0.7 dB, polarization dependent loss ~0.3 dB, and response time ~20 ms.

© 2012 OSA

OCIS Codes
(230.2090) Optical devices : Electro-optical devices
(130.4815) Integrated optics : Optical switching devices

ToC Category:
Optical Devices

Original Manuscript: June 4, 2012
Revised Manuscript: July 1, 2012
Manuscript Accepted: July 5, 2012
Published: July 11, 2012

Su Xu, Hongwen Ren, Jie Sun, and Shin-Tson Wu, "Polarization independent VOA based on dielectrically stretched liquid crystal droplet," Opt. Express 20, 17059-17064 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Schenk, P. Dürr, D. Kunze, H. Lakner, and H. Kück, “A resonantly excited 2D-micro-scanning-mirror with large deflection,” Sens. Actuators A Phys.89(1–2), 104–111 (2001). [CrossRef]
  2. S. H. Hung, H. T. Hsieh, and G. D. J. Su, “An electro-magnetic micromachined actuator monolithically integrated with a vertical shutter for variable optical attenuation,” J. Micromech. Microeng.18(7), 075003 (2008). [CrossRef]
  3. L. Zhu, Y. Huang, and A. Yariv, “Integrated microfluidic variable optical attenuator,” Opt. Express13(24), 9916–9921 (2005). [CrossRef] [PubMed]
  4. M. I. Lapsley, S. C. S. Lin, X. Mao, and T. J. Huang, “An in-plane, variable optical attenuator using a fluid-based tunable reflective interface,” Appl. Phys. Lett.95(8), 083507 (2009). [CrossRef]
  5. R. A. Soref and D. H. McMahon, “Total switching of unpolarized fiber light with a four-port electro-optic liquid-crystal device,” Opt. Lett.5(4), 147–149 (1980). [CrossRef] [PubMed]
  6. N. A. Riza and S. A. Khan, “Liquid-crystal-deflector based variable fiber-optic attenuator,” Appl. Opt.43(17), 3449–3455 (2004). [CrossRef] [PubMed]
  7. Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett.84(8), 1233–1235 (2004). [CrossRef]
  8. F. Du, Y. Q. Lu, H. Ren, S. Gauza, and S. T. Wu, “Polymer-stabilized cholesteric liquid crystal for polarization-independent variable optical attenuator,” Jpn. J. Appl. Phys.43(10), 7083–7086 (2004). [CrossRef]
  9. Y. Q. Lu, F. Du, Y. H. Lin, and S. T. Wu, “Variable optical attenuator based on polymer stabilized twisted nematic liquid crystal,” Opt. Express12(7), 1221–1227 (2004). [CrossRef] [PubMed]
  10. Y. H. Wu, Y. H. Lin, Y. Q. Lu, H. Ren, Y. H. Fan, J. Wu, and S. T. Wu, “Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal,” Opt. Express12(25), 6382–6389 (2004). [CrossRef] [PubMed]
  11. K. Takizawa, K. Kodama, and K. Kishi, “Polarization-independent optical fiber modulator by use of polymer-dispersed liquid crystals,” Appl. Opt.37(15), 3181–3189 (1998). [CrossRef] [PubMed]
  12. K. M. Chen, H. Ren, and S. T. Wu, “PDLC-Based VOA with a small polarization dependent loss,” Opt. Commun.282(22), 4374–4377 (2009). [CrossRef]
  13. W. Hu, A. Srivastava, F. Xu, J. T. Sun, X. W. Lin, H. Q. Cui, V. Chigrinov, and Y. Q. Lu, “Liquid crystal gratings based on alternate TN and PA photoalignment,” Opt. Express20(5), 5384–5391 (2012). [CrossRef] [PubMed]
  14. W. Hu, A. K. Srivastava, X. W. Lin, X. Liang, Z. J. Wu, J. T. Sun, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett.100(11), 111116 (2012). [CrossRef]
  15. J. Yan, Y. Li, and S. T. Wu, “High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal,” Opt. Lett.36(8), 1404–1406 (2011). [CrossRef] [PubMed]
  16. C. G. Tsai and J. A. Yeh, “Circular dielectric liquid iris,” Opt. Lett.35(14), 2484–2486 (2010). [CrossRef] [PubMed]
  17. H. Ren, S. Xu, and S. T. Wu, “Deformable liquid droplets for optical beam control,” Opt. Express18(11), 11904–11910 (2010). [CrossRef] [PubMed]
  18. H. Ren, S. Xu, D. Ren, and S. T. Wu, “Novel optical switch with a reconfigurable dielectric liquid droplet,” Opt. Express19(3), 1985–1990 (2011). [CrossRef] [PubMed]
  19. J. L. Jackel, S. Hackwood, and G. Beni, “Electrowetting optical switch,” Appl. Phys. Lett.40(1), 4–5 (1982). [CrossRef]
  20. S. A. Reza and N. A. Riza, “A liquid lens-based broadband variable fiber optical attenuator,” Opt. Commun.282(7), 1298–1303 (2009). [CrossRef]
  21. C. U. Murade, J. M. Oh, D. van den Ende, and F. Mugele, “Electrowetting driven optical switch and tunable aperture,” Opt. Express19(16), 15525–15531 (2011). [CrossRef] [PubMed]
  22. C. Karuwan, K. Sukthang, A. Wisitsoraat, D. Phokharatkul, V. Patthanasettakul, W. Wechsatol, and A. Tuantranont, “Electrochemical detection on electrowetting-on-dielectric digital microfluidic chip,” Talanta84(5), 1384–1389 (2011). [CrossRef] [PubMed]
  23. G. G. Hougham, P. E. Cassidy, K. Johns, and T. Davidson, Fluoropolymers 2: Properties (Plenum Press, New York, 1999).
  24. H. Ren, S. Xu, and S. T. Wu, “Voltage-expandable liquid crystal surface,” Lab Chip11(20), 3426–3430 (2011). [CrossRef] [PubMed]
  25. P. Penfield and H. A. Haus, Electrodynamics of Moving Media (Cambridge, MIT, 1967).
  26. M. van Buren and N. A. Riza, “Foundations for low-loss fiber gradient-index lens pair coupling with the self-imaging mechanism,” Appl. Opt.42(3), 550–565 (2003). [CrossRef] [PubMed]
  27. D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices (Wiley, 2006).
  28. H. Ren, H. Xianyu, S. Xu, and S. T. Wu, “Adaptive dielectric liquid lens,” Opt. Express16(19), 14954–14960 (2008). [CrossRef] [PubMed]
  29. S. Xu, Y. J. Lin, and S. T. Wu, “Dielectric liquid microlens with well-shaped electrode,” Opt. Express17(13), 10499–10505 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited