OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 15 — Jul. 16, 2012
  • pp: 17065–17081

Impact of polar-azimuthal illumination angles on efficiency of nano-cavity-array integrated single-photon detectors

Mária Csete, Anikó Szalai, Áron Sipos, and Gábor Szabó  »View Author Affiliations


Optics Express, Vol. 20, Issue 15, pp. 17065-17081 (2012)
http://dx.doi.org/10.1364/OE.20.017065


View Full Text Article

Enhanced HTML    Acrobat PDF (2997 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The absorptance of superconducting nanowire single-photon detectors consisting of subwavelength NbN stripes arrayed in 200 nm and 600 nm periodic patterns and integrated with nano-cavity-array and closing gold segments is maximized at the wavelength of 1550 nm via numerical computations. It is shown that the optimum azimuthal angles are γ = 90° (S-orientation) in case of p-polarized illumination, and γ = 0° (P-orientation) during s-polarized illumination. The p-polarized illumination of 200-nm-pitch design in S-orientation results in polar angle independent ~95% NbN absorptance due to collective resonances on the nano-cavity-array. In 600-nm-pitch design a local absorptance maximum (37.2%) appears as a result of near-field concentration promoted by Brewster-wave excitation during p-polarized illumination in S-orientation. For practical applications s-polarized illumination of 600-nm-pitch design in P-orientation is proposed, as ~52% absorptance larger than in case of perpendicular incidence is attainable due to total internal reflection.

© 2012 OSA

OCIS Codes
(040.3060) Detectors : Infrared
(040.5160) Detectors : Photodetectors
(050.2770) Diffraction and gratings : Gratings
(220.4830) Optical design and fabrication : Systems design
(240.6690) Optics at surfaces : Surface waves
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Detectors

History
Original Manuscript: June 7, 2012
Revised Manuscript: June 24, 2012
Manuscript Accepted: June 25, 2012
Published: July 11, 2012

Citation
Mária Csete, Anikó Szalai, Áron Sipos, and Gábor Szabó, "Impact of polar-azimuthal illumination angles on efficiency of nano-cavity-array integrated single-photon detectors," Opt. Express 20, 17065-17081 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-15-17065


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–708 (2001). [CrossRef]
  2. F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultra-narrow superconducting nanowires,” Nano Lett.11(5), 2048–2053 (2011). [CrossRef] [PubMed]
  3. A. Verevkin, A. Pearlman, W. Slysz, J. Zhang, M. Currier, A. Korneev, G. Chulkova, O. Okunev, P. Kuominov, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communication,” J. Mod. Opt.51(9–10), 1447–1458 (2004).
  4. X. J. Yu and H. S. Kwok, “Optical wire grid polarizers at oblique angles of incidence,” J. Appl. Phys.93(8), 4407–4412 (2003). [CrossRef]
  5. V. Anant, A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, and K. K. Berggren, “Optical properties of superconducting nanowire single-photon detectors,” Opt. Express16(14), 10750–10761 (2008). [CrossRef] [PubMed]
  6. G. R. Bird and M. Parrish., “The wire grid as near-infrared polarizer,” J. Opt. Soc. Am.50(9), 886–891 (1960).
  7. E. F. C. Driessen and M. J. A. de Dood, “The perfect absorber,” Appl. Phys. Lett.94(17), 171109 (2009). [CrossRef]
  8. K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express14(2), 527–534 (2006). [CrossRef] [PubMed]
  9. M. Csete, Á. Sipos, F. Najafi, X. Hu, and K. K. Berggren, “Numerical method to optimize the polar-azimuthal orientation of infrared superconducting-nanowire single-photon detectors,” Appl. Opt.50(31), 5949–5956 (2011). [CrossRef] [PubMed]
  10. M. Csete, Á. Sipos, F. Najafi, and K. K. Berggren, “Polar-azimuthal angle dependent efficiency of different infrared superconducting nanowire single-photon detector designs,” Proc. SPIE8155, 81551K, 81551K-8 (2011). [CrossRef]
  11. X. Hu, C. W. Holzwarth, D. Masciarelli, E. A. Dauler, and K. K. Berggren, “Efficiently coupling light to superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond.19(3), 336–340 (2009). [CrossRef]
  12. X. Hu, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Superconducting nanowire single-photon detectors integrated with optical nano-antennae,” Opt. Express19(1), 17–31 (2011). [CrossRef] [PubMed]
  13. J. K. W. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond.17(2), 581–585 (2007). [CrossRef]
  14. A. J. Kerman, J. K. W. Yang, R. J. Molnar, E. A. Dauler, and K. K. Berggren, “Electrothermal feedback in superconducting nanowire single-photon detectors,” Phys. Rev. B79(10), 100509 (2009). [CrossRef]
  15. A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett.88(11), 111116 (2006). [CrossRef]
  16. N. N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal-dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 μm,” IEEE J. Quantum Electron.43(6), 479–485 (2007). [CrossRef]
  17. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006). [CrossRef]
  18. H. T. Miyazaki and Y. Kurokawa, “Controlled plasmon resonance in closed metal/insulator/metal nanocavities,” Appl. Phys. Lett.89(21), 211126 (2006). [CrossRef]
  19. E. Popov, N. Bonod, and S. Enoch, “Non-Bloch plasmonic stop-band in real-metal gratings,” Opt. Express15(10), 6241–6250 (2007). [CrossRef] [PubMed]
  20. W. C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, “Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings,” Phys. Rev. B59(19), 12661–12666 (1999). [CrossRef]
  21. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett.83(14), 2845–2848 (1999). [CrossRef]
  22. F. J. García-Vidal and L. Martín-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” 2002 Phys. Rev. B66(15), 155412 (2002). [CrossRef]
  23. E. K. Popov, N. Bonod, and S. Enoch, “Comparison of plasmon surface waves on shallow and deep metallic 1D and 2D gratings,” Opt. Express15(7), 4224–4237 (2007). [CrossRef] [PubMed]
  24. P. Genevet, J.-P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett.10(12), 4880–4883 (2010). [CrossRef] [PubMed]
  25. M. Born and E. Wolf, Principles of Optics (Pergamon, 1964).
  26. F. J. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys.79(4), 1267–1290 (2007). [CrossRef]
  27. J.-J. Greffet and C. Baylard, “Nonspecular reflection from a lossy dielectric,” Opt. Lett.18(14), 1129–1131 (1993). [CrossRef] [PubMed]
  28. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter33(8), 5186–5201 (1986). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (3552 KB)     
» Media 2: AVI (3716 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited