OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 15 — Jul. 16, 2012
  • pp: 17119–17125

Identification of Eu oxidation states in a doped Sr5(PO4)3F phosphor by TOF-SIMS imaging

H. C. Swart, I. M. Nagpure, O. M. Ntwaeaborwa, G. L. Fisher, and J. J. Terblans  »View Author Affiliations

Optics Express, Vol. 20, Issue 15, pp. 17119-17125 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2759 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An Eu-doped Sr5(PO4)3F phosphor with a hexagonal apatite structure was prepared by a urea assisted combustion method. There was evidence of the reduction of Eu3+ to Eu2+ based upon the photoluminescence data. This was confirmed with X-ray photoelectron spectroscopy. Normally, it is very difficult to distinguish between two oxidation states with time-of-flight secondary ion mass spectrometry (TOF-SIMS), but it is shown that the parallel detection capability of the technique allows full molecular and isotopic characterization of the matrix chemistry. The two states were detected by the EuF+ and EuF2+ species, ostensibly the Eu(II) and Eu(III) oxidation states, respectively.

© 2012 OSA

OCIS Codes
(250.5230) Optoelectronics : Photoluminescence
(300.2140) Spectroscopy : Emission
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(300.6490) Spectroscopy : Spectroscopy, surface
(300.6560) Spectroscopy : Spectroscopy, x-ray

ToC Category:

Original Manuscript: May 9, 2012
Revised Manuscript: June 21, 2012
Manuscript Accepted: July 4, 2012
Published: July 12, 2012

H. C. Swart, I. M. Nagpure, O. M. Ntwaeaborwa, G. L. Fisher, and J. J. Terblans, "Identification of Eu oxidation states in a doped Sr5(PO4)3F phosphor by TOF-SIMS imaging," Opt. Express 20, 17119-17125 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. C. Swart, J. J. Terblans, O. M. Ntwaeaborwa, E. Coetsee, B. M. Mothudi, and M. S. Dhlamini, “Photon emission mechanisms of different phosphors,” Nucl. Instrum. Meth. B267(16), 2630–2633 (2009). [CrossRef]
  2. P. Dorenbos, “Systematic behaviour in trivalent lanthanide charge transfer energies,” J. Phys. Condens. Matter15(49), 8417–8434 (2003). [CrossRef]
  3. A. A. Kaminskii, “Laser crystals and ceramics: recent advances,” Laser Photon. Rev.1(2), 93–177 (2007). [CrossRef]
  4. A. O. Wright, M. D. Seltzer, J. B. Gruber, and B. H. T. Chai, “Site-selective spectroscopy and determination of energy levels in Eu3+ doped strontium fluorophosphote,” J. Appl. Phys.78(4), 2456–2467 (1995). [CrossRef]
  5. K. I. Schaffers, J. B. Tassano, A. B. Bayramian, and R. C. Morris, “Growth of Yb: S-FAP [Yb3+:Sr5(PO4)(3)F] crystals for the Mercury laser,” J. Cryst. Growth253(1-4), 297–306 (2003). [CrossRef]
  6. D. K. Sardar and F. Castano, “Characterization of spectroscopic and laser properties of Pr3+ in Sr5(PO4)(3)F crystal,” J. Appl. Phys.91(3), 911–915 (2002). [CrossRef]
  7. I. M. Nagpure, S. J. Dhoble, M. Mohapatra, V. Kumar, S. S. Pitale, O. M. Ntwaeaborwa, S. V. Godbole, and H. C. Swart, “Dependence of Eu3+ luminescence dynamics on the structure of the combustion synthesized Sr5(PO4)3F host,” J. Alloy. Comp.509(5), 2544–2551 (2011). [CrossRef]
  8. I. M. Nagpure, S. S. Pitale, E. Coetsee, O. M. Ntwaeaborwa, J. J. Terblans, and H. C. Swart, “Lattice site dependent cathodoluminescence behaviour and surface chemical changes in Sr5(PO4)3F host,” Physica B: Condens. Matter407(10), 1505–1508 (2012).
  9. A. Zounani, D. Zambon, and J. C. Cousseins, “Optical-properties of Eu3+ activated Sr10F2(PO4)6 elaborated by coprecipitation,” J. Alloy. Comp.188(1–2), 82–86 (1992). [CrossRef]
  10. G. Särner, M. Richter, and M. Alden, “Investigations of blue emitting phosphors for thermometry,” Meas. Sci. Technol.19(12), 125304 (2008). [CrossRef]
  11. C. Zhang, J. Yang, C. Lin, C. Li, and J. Lin, “Reduction of Eu3+ to Eu2+ in MAl2Si2O8 (M = Ca, Sr, Ba) in air condition,” J. Solid State Chem.182(7), 1673–1678 (2009). [CrossRef]
  12. S. J. Dhoble, I. M. Nagpure, N. S. Dhoble, and P. Molina, “Effect of Bi ion on Eu2+ ↔ Eu3+ conversion in CaF2:Eu phosphors for RPL dosimetry,” J. Mater. Sci.46(22), 7253–7261 (2011). [CrossRef]
  13. G. J. Gao, S. Reibstein, M. Y. Peng, and L. Wondraczek, “Tunable dual-mode photoluminescence from nanocrystalline Eu-doped Li2ZnSiO4 glass ceramic phosphors,” J. Mater. Chem.21(9), 3156–3161 (2011). [CrossRef]
  14. W. B. Im, J. H. Kang, D. C. Lee, S. Lee, D. Y. Jeon, Y. C. Kang, and K. Y. Jung, “Origin of PL intensity increase of CaMgSi2O6: Eu2+ phosphor after baking process for PDPs application,” Solid State Commun.133(3), 197–201 (2005). [CrossRef]
  15. J. Zhang, M. Yang, H. Jin, X. Wang, X. Zhao, X. Liu, and L. Peng, “Self-assembly of LaBO3:Eu twin microspheres synthesized by a facile hydrothermal process and their tunable luminescence properties,” Mater. Res. Bull.47(2), 247–252 (2012). [CrossRef]
  16. P. Maślankiewicz, J. Szade, A. Winiarski, and Ph. Daniel, “Bridgman-Stockbarger growth and X-ray photoelectron spectroscopy study of LiY1-xEuxF4 crystals,” Cryst. Res. Technol.40(4-5), 410–418 (2005). [CrossRef]
  17. A. Mezzi, S. Kaciulis, I. Cacciotti, A. Bianco, G. Gusmano, F. R. Lamastra, and M. E. Fragalà, “Structure and composition of electrospun titania nanofibres doped with Eu,” Surf. Interface Anal.42(6-7), 572–575 (2010). [CrossRef]
  18. R. Vercaemst, D. Poelman, R. L. Van Meirhaeghe, L. Fiermans, W. H. Laflère, and F. Cardon, “An XPS study of the dopants' valence states and the composition of CaS1 − xSex:Eu and SrS1 − xSex:Ce thin film electroluminescent devices,” J. Lumin.63(1–2), 19–30 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited