OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 15 — Jul. 16, 2012
  • pp: 17145–17159

Effects of resonant tunneling and dynamics of coherent interaction on intrinsic linewidth of quantum cascade lasers

Tao Liu, Kenneth E. Lee, and Qi Jie Wang  »View Author Affiliations

Optics Express, Vol. 20, Issue 15, pp. 17145-17159 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1357 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A theoretical model for calculation of the intrinsic linewidth of QCLs is built on the basis of the quantum Langevin approach. It differs from the traditional rate equation model in that the resonant tunneling and the dynamics of coherent interaction can be considered. Results show that the coupling strength and the dephasing rate associated with resonant tunneling strongly affect the linewidth of THz QCLs in the incoherent resonant-tunneling transport regime but only induce little influence in the coherent regime. The dynamics of coherent interaction and resonant-tunneling transport show insignificant effects on the linewidth calculation of mid-infrared QCLs due to strong coupling in resonant tunneling. We also demonstrate that by properly designing the active regions of QCLs, one can reduce the intrinsic linewidth according to our model.

© 2012 OSA

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(270.2500) Quantum optics : Fluctuations, relaxations, and noise
(300.3700) Spectroscopy : Linewidth
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:
Lasers and Laser Optics

Original Manuscript: May 23, 2012
Revised Manuscript: June 30, 2012
Manuscript Accepted: July 9, 2012
Published: July 12, 2012

Tao Liu, Kenneth E. Lee, and Qi Jie Wang, "Effects of resonant tunneling and dynamics of coherent interaction on intrinsic linewidth of quantum cascade lasers," Opt. Express 20, 17145-17159 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994). [CrossRef] [PubMed]
  2. T. Liu and Q. J. Wang, “Fundamental frequency noise and linewidth broadening caused by intrinsic temperature fluctuations in quantum cascade lasers,” Phys. Rev. B 84(12), 125322 (2011). [CrossRef]
  3. R. F. Curl, F. Capsso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010). [CrossRef]
  4. M. S. Vitiello, L. Consolino, S. Bartalini, A. Tredicucci, M. Inguscio, and P. De Natale, “The intrinsic linewidth of THz quantum cascade lasers,” CLEO: Science and Innovations, (Optical Society of America, 2012), paper CTu2B.2.
  5. C. Jirauschek, “Monte Carlo study of intrinsic linewidths in terahertz quantum cascade lasers,” Opt. Express 18(25), 25922–25927 (2010). [CrossRef] [PubMed]
  6. S. Bartalini, S. Borri, I. Galli, G. Giusfredi, D. Mazzotti, T. Edamura, N. Akikusa, M. Yamanishi, and P. De Natale, “Measuring frequency noise and intrinsic linewidth of a room-temperature DFB quantum cascade laser,” Opt. Express 19(19), 17996–18003 (2011). [CrossRef] [PubMed]
  7. L. Tombez, S. Schilt, J. Di Francesco, P. Thomann, and D. Hofstetter, “Temperature dependence of the frequency noise in a mid-IR DFB quantum cascade laser from cryogenic to room temperature,” Opt. Express 20(7), 6851–6859 (2012). [CrossRef] [PubMed]
  8. S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett. 104(8), 083904 (2010). [CrossRef] [PubMed]
  9. M. Yamanishi, T. Edamura, K. Fujita, N. Akikusa, and H. Kan, “Theory of the intrinsic linewidth of quantum-cascade lasers: hidden reason for the narrow linewidth and line-broadening by thermal photons,” IEEE J. Quantum Electron. 44(1), 12–29 (2008). [CrossRef]
  10. S. Kumar and Q. Hu, “Coherence of resonant-tunneling transport in terahertz quantum-cascade lasers,” Phys. Rev. B 80(24), 245316 (2009). [CrossRef]
  11. C. Sirtori, F. Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Resonant tunneling in quantum cascade lasers,” IEEE J. Quantum Electron. 34(9), 1722–1729 (1998). [CrossRef]
  12. H. Callebaut and Q. Hu, “Importance of coherence for electron transport in terahertz quantum cascade lasers,” J. Appl. Phys. 98(10), 104505 (2005). [CrossRef]
  13. L. Davidovich, “Sub-Poissonian processes in quantum optics,” Rev. Mod. Phys. 68(1), 127–173 (1996). [CrossRef]
  14. G. P. Agrawal and C. M. Bowden, “Concept of linewidth enhancement factor in semiconductor lasers: its usefulness and limitations,” IEEE Photon. Technol. Lett. 5(6), 640–642 (1993). [CrossRef]
  15. M. O. Scully and M. S. Zubairy, Quantum optics (Cambridge University Press, 1997).
  16. W. H. Louisell, Quantum statistical properties of radiation (Wiley, 1973).
  17. K. Petermann, Laser diode modulation and noise (Kluwar Academic, 1988).
  18. C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982). [CrossRef]
  19. T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, and L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett. 89(9), 091121 (2006). [CrossRef]
  20. B. Daino, P. Spano, M. Tamburrini, and S. Piazzolla, “Phase noise and spectral line shape in semiconductor lasers,” IEEE J. Quantum Electron. 19(3), 266–270 (1983). [CrossRef]
  21. C. H. Henry and R. F. Kazarinov, “Quantum noise in photonics,” Rev. Mod. Phys. 68(3), 801–853 (1996). [CrossRef]
  22. A. M. Andrews, A. Benz, C. Deutsch, G. Fasching, K. Unterrainer, P. Klang, W. Schrenk, and G. Strasser, “Doping dependence of LO-phonon depletion scheme THz quantum-cascade lasers,” Mater. Sci. Eng. B 147(2-3), 152–155 (2008). [CrossRef]
  23. S. Kumar, Q. Hu, and J. L. Reno, “186 K operation of terahertz quantum-cascade lasers based on a diagonal design,” Appl. Phys. Lett. 94(13), 131105 (2009). [CrossRef]
  24. D. Hofstetter, M. Beck, T. Aellen, and J. Faist, “High-temperature operation of distributed feedback quantum-cascade lasers at 5.3 μm,” Appl. Phys. Lett. 78(4), 396 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited