OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 15 — Jul. 16, 2012
  • pp: 17192–17200

Optical frequency comb generation through quasi-phase matched quadratic frequency conversion in a micro-ring resonator

Zi-jian Wu, Yang Ming, Fei Xu, and Yan-qing Lu  »View Author Affiliations


Optics Express, Vol. 20, Issue 15, pp. 17192-17200 (2012)
http://dx.doi.org/10.1364/OE.20.017192


View Full Text Article

Enhanced HTML    Acrobat PDF (1175 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose optical frequency comb generation in a monolithic micro-ring resonator. Being different from the previously reported nonlinear optical frequency combs, our scheme is based on more efficient quadratic frequency conversion rather than the third-order nonlinearity. To overcome the phase mismatch, a partly poled nonlinear ring is employed. Cascading second harmonic generation and parametric down conversion processes thus are realized through quasi-phase matching (QPM). Coupling equations are used to describe the related nonlinear interactions among different whispering-gallery modes, showing some interesting characteristics that are different from conventional QPM technology.

© 2012 OSA

OCIS Codes
(160.3730) Materials : Lithium niobate
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(190.4975) Nonlinear optics : Parametric processes

ToC Category:
Nonlinear Optics

History
Original Manuscript: May 29, 2012
Revised Manuscript: July 5, 2012
Manuscript Accepted: July 5, 2012
Published: July 12, 2012

Citation
Zi-jian Wu, Yang Ming, Fei Xu, and Yan-qing Lu, "Optical frequency comb generation through quasi-phase matched quadratic frequency conversion in a micro-ring resonator," Opt. Express 20, 17192-17200 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-15-17192


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science332(6029), 555–559 (2011). [CrossRef] [PubMed]
  2. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4(1), 37–40 (2010). [CrossRef]
  3. I. H. Agha, Y. Okawachi, and A. L. Gaeta, “Theoretical and experimental investigation of broadband cascaded four-wave mixing in high-Q microspheres,” Opt. Express17(18), 16209–16215 (2009). [CrossRef] [PubMed]
  4. S. N. Zhu, Y. Y. Zhu, and N.-B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science278(5339), 843–846 (1997). [CrossRef]
  5. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450(7173), 1214–1217 (2007). [CrossRef] [PubMed]
  6. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127(6), 1918–1939 (1962). [CrossRef]
  7. P. A. Franken and J. F. Ward, “Optical harmonics and nonlinear phenomena,” Rev. Mod. Phys.35(1), 23–39 (1963). [CrossRef]
  8. Y. L. Lee, B. A. Yu, T. J. Eom, W. Shin, C. Jung, Y. C. Noh, J. Lee, D. K. Ko, and K. Oh, “All-optical AND and NAND gates based on cascaded second-order nonlinear processes in a Ti-diffused periodically poled LiNbO3 waveguide,” Opt. Express14(7), 2776–2782 (2006). [CrossRef] [PubMed]
  9. X. S. Song, Z. Y. Yu, Q. Wang, F. Xu, and Y. Q. Lu, “Polarization independent quasi-phase-matched sum frequency generation for single photon detection,” Opt. Express19(1), 380–386 (2011). [CrossRef] [PubMed]
  10. Z. J. Wu, X. K. Hu, Z. Y. Yu, W. Hu, F. Xu, and Y. Q. Lu, “Nonlinear plasmonic frequency conversion through quasiphase matching,” Phys. Rev. B82(15), 155107 (2010). [CrossRef]
  11. A. Rose and D. R. Smith, “Overcoming phase mismatch in nonlinear metamaterials,” Opt. Mater. Express1(7), 1232–1243 (2011). [CrossRef]
  12. Y. Q. Lu, Y. L. Lu, C. C. Xue, J. J. Zheng, X. F. Chen, G. P. Luo, N. B. Ming, B. H. Feng, and X. L. Zhang, “Femtosecond violet light generation by quasi-phase-matched frequency doubling in optical superlattice LiNbO3,” Appl. Phys. Lett.69(21), 3155–3157 (1996). [CrossRef]
  13. J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett.104(15), 153901 (2010). [CrossRef] [PubMed]
  14. V. S. Ilchenko, A. B. Matsko, A. A. Savchenkov, and L. Maleki, “Low-threshold parametric nonlinear optics with quasi-phase-matched whispering-gallery modes,” J. Opt. Soc. Am. B20(6), 1304–1308 (2003). [CrossRef]
  15. V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett.92(4), 043903 (2004). [CrossRef] [PubMed]
  16. Kiyotaka Sasagawa, and Masahiro Tsuchiya, “High efficiency third harmonic generation in PPMgLN disk resonator,” in CLEO 2007 - Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), Paper CThC6.
  17. J. Heebner, R. Grover, and T. A. Ibrahim, Optical Microresonators (Springer, 2008), Chap. 3.
  18. A. A. Savchenkov, A. B. Matsko, M. Mohageg, D. V. Strekalov, and L. Maleki, “Parametric oscillations in a whispering gallery resonator,” Opt. Lett.32(2), 157–159 (2007). [CrossRef] [PubMed]
  19. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, n(e), in congruent lithium niobate,” Opt. Lett.22(20), 1553–1555 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited