OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 15 — Jul. 16, 2012
  • pp: 17201–17213

Semiclassical analysis of two-level collective population inversion using photonic crystals in three-dimensional systems

Hiroyuki Takeda  »View Author Affiliations


Optics Express, Vol. 20, Issue 15, pp. 17201-17213 (2012)
http://dx.doi.org/10.1364/OE.20.017201


View Full Text Article

Enhanced HTML    Acrobat PDF (1817 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

I theoretically demonstrate the population inversion of collective two-level atoms using photonic crystals in three-dimensional (3D) systems by self-consistent solution of the semiclassical Maxwell-Bloch equations. In the semiclassical theory, while electrons are quantized to ground and excited states, electromagnetic fields are treated classically. For control of spontaneous emission and steady-state population inversion of two-level atoms driven by an external laser which is generally considered impossible, large contrasts of electromagnetic local densities of states (EM LDOS’s) are necessary. When a large number of two-level atoms are coherently excited (Dicke model), the above properties can be recaptured by the Maxwell-Bloch equations based on the first-principle calculation. In this paper, I focus on the realistic 1D PC’s with finite structures perpendicular to periodic directions in 3D systems. In such structures, there appear pseudo photonic band gaps (PBG’s) in which light leaks into air regions, unlike complete PBG’s. Nevertheless, these pseudo PBG’s provide large contrasts of EM LDOS’s in the vicinity of the upper photonic band edges. I show that the realistic 1D PC’s in 3D systems enable the control of spontaneous emission and population inversion of collective two-level atoms driven by an external laser. This finding facilitates experimental fabrication and realization.

© 2012 OSA

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Quantum Optics

History
Original Manuscript: May 29, 2012
Revised Manuscript: June 15, 2012
Manuscript Accepted: June 25, 2012
Published: July 12, 2012

Citation
Hiroyuki Takeda, "Semiclassical analysis of two-level collective population inversion using photonic crystals in three-dimensional systems," Opt. Express 20, 17201-17213 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-15-17201


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.582486–2489 (1987). [CrossRef] [PubMed]
  2. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.582059–2062 (1987). [CrossRef] [PubMed]
  3. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69681 (1946).
  4. P. W. Milloni and J. H. Eberly, Laser Physics (Wiley, 2009).
  5. M. Lindberg and C. M. Savage, “Steady-state two-level atomic population inversion via a quantized cavity field,” Phys. Rev. A385182–5192 (1988). [CrossRef] [PubMed]
  6. S. John and T. Quang, “Collective switching and inversion without fluctuation of two-level atoms in confined photonic systems,” Phys. Rev. Lett.781888–1891 (1997). [CrossRef]
  7. T. M. Stace, A. C. Doherty, and S. D. Barrett, “Population inversion of a driven two-level system in a structureless bath,” Phys. Rev. Lett.95106801 (2005). [CrossRef] [PubMed]
  8. S. Hughes and H. J. Carmichael, “Stationary inversion of a two level system coupled to an off-resonant cavity with strong dissipation,” Phys. Rev. Lett.107, 193601 (2011). [CrossRef] [PubMed]
  9. B. R. Mollow, “Power spectrum of light scattered by two-level systems,” Phys. Rev.1881969–1975 (1969). [CrossRef]
  10. M. Florescu and S. John, “Single-atom switching in photonic crystals,” Phys. Rev. A64033801 (2001). [CrossRef]
  11. M. Florescu and S. John, “Resonance fluorescence in photonic band gap waveguide architectures: Engineering the vacuum for all-optical switching,” Phys. Rev. A69053810 (2004). [CrossRef]
  12. S. John and M. Florescu, “Photonic bandgap materials: towards an all-optical micro-transistor,” J. Opt. A: Pure Appl. Opt.3S103–S120 (2001). [CrossRef]
  13. R. H. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev.9399–110 (1954). [CrossRef]
  14. F. T. Arecchi and E. Courtens, “Cooperative phenomena in resonant electromagnetic propagation,” Phys. Rev. A21730–1737 (1970). [CrossRef]
  15. R. Bonifacio, P. Schwendimann, and F. Haake, “Quantum statistical theory of superradiance. I,” Phys. Rev. A4302–313 (1971). [CrossRef]
  16. R. Bonifacio and L. A. Lugiato, “Cooperative radiation processes in two-level systems: Superfluorescence,” Phys. Rev. A111507–1521 (1975). [CrossRef]
  17. H. Takeda and S. John, “Self-consistent Maxwell-Bloch theory of quantum-dot-population switching in photonic crystals,” Phys. Rev. A83053811 (2011). [CrossRef]
  18. H. Takeda, “Collective population evolution of two-level atoms based on mean-field theory,” Phys. Rev. A85, 023837 (2012). [CrossRef]
  19. A. A. Belyanin, V. V. Kocharovsky, Vl. V. Kocharovsky, and D. S. Pestov, “Novel schemes and prospects of superradiant lasing in heterostructures,” Laser Phys.13161–167 (2003).
  20. I. Staude, M. Thiel, S. Essig, C. Wolff, K. Busch, G. von Freymann, and M. Wegener, “Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths,” Opt. Lett.35, 1094–1096 (2010). [CrossRef] [PubMed]
  21. M. D. Leistikow, A. P. Mosk, E. Yeganegi, S. R. Huisman, A. Lagendijk, and W. L. Vos, “Inhibited spontaneous emission of quantum dots observed in a 3D photonic band gap,” Phys. Rev. Lett.107, 193903 (2011). [CrossRef] [PubMed]
  22. U. Hoeppe, C. Wolff, J. Kuchenmeister, J. Niegemann, M. Drescher, H. Benner, and Kurt Busch, “Direct observation of non-markovian radiation dynamics in 3D bulk photonic crystals”, Phys. Rev. Lett.108, 043603 (2012). [CrossRef] [PubMed]
  23. S. Reitzenstein, N. Gregersen, C. Kistner, M. Strauss, C. Schneider, L. Pan, T. R. Nielsen, S. Hofling, J. Mork, and A. Forchel, “Oscillatory variations in the Q factors of high quality micropillar cavities,” Appl. Phys. Lett.94061108 (2009). [CrossRef]
  24. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432, 200–203 (2004). [CrossRef] [PubMed]
  25. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445, 896–899 (2007). [CrossRef] [PubMed]
  26. J. P. Reithmaier, G. Se.k, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity,” Nature432, 197–200 (2004). [CrossRef] [PubMed]
  27. M. Lermer, N. Gregersen, F. Dunzer, S. Reitzenstein, S. Hofling, J. Mork, L. Worschech, M. Kamp, and A. Forchel, “Bloch-wave engineering of quantum dot micropillars for cavity quantum electrodynamics experiments,” Phys. Rev. Lett.108, 057402 (2012). [CrossRef] [PubMed]
  28. L. Allen and J. H. Eberly, Optical Resonance and Two-level Atoms (Dover Publications, Inc., New York, 1987).
  29. I. Kang and F. W. Wise, “Electronic structure and optical properties of PbS and PbSe quantum dots,” J. Opt. Soc. Am. B141632–1646 (1997). [CrossRef]
  30. P. M. Naves, T. N. Gonzaga, A. F. G. Monte, and N. O. Dantas, “Band gap energy of PbS quantum dots in oxide glasses as a function of concentration,” J. Non-Crystalline Solids3523633–3635 (2006). [CrossRef]
  31. M. T. Rakher, R. Bose, C. W. Wong, and K. Srinivasan, “Spectroscopy of 1.55 μm PbS quantum dots on Si photonic crystal cavities with a fiber taper waveguide,” Appl. Phys. Lett.96161108 (2010). [CrossRef]
  32. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  33. K. Busch and S. John, “Photonic band gap formation in certain self-organizing systems,” Phys. Rev. E583896–3908 (1998). [CrossRef]
  34. P. Yao, V. S. C. Manga Rao, and S. Hughes, “On-chip single photon sources using planar photonic crystals and single quantum dots,” Laser Photonics Rev.4499–516 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited