OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 15 — Jul. 16, 2012
  • pp: 17230–17236

Design of out-coupling structures with metal-dielectric surface relief

Sun-Kyung Kim, Ho-Seok Ee, Kyung-Deok Song, and Hong-Gyu Park  »View Author Affiliations

Optics Express, Vol. 20, Issue 15, pp. 17230-17236 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (887 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose an unconventional out-coupling structure consisting of two-dimensional periodic metal-dielectric patterns. Numerical simulations show that low orders of guided modes are extracted efficiently by the metal-dielectric pattern with a pitch size of ~(λ/n) and pattern depth of <100 nm. Vertical GaN light-emitting diodes with optimized metal-ITO patterns exhibited extraction efficiencies enhanced by factors of 6.6 and 2.6 for perfect conductor and silver metals, respectively, as compared to a non-patterned structure. The plasmonic absorption loss from the corrugated silver mirror accounts for the relatively smaller enhancement in extraction efficiency with the silver-ITO pattern. Furthermore, a double-sided out-coupling structure consisting of an upper GaN-air pattern and a bottom perfect conductor-ITO pattern exhibited a 40% enhancement in extraction efficiency as compared to the structure with single GaN-air pattern. We believe that deep understandings of the interaction between light and metal-dielectric patterns will lead to improved device performances in various optoelectronic applications including high-efficiency light-emitting diodes.

© 2012 OSA

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(230.3670) Optical devices : Light-emitting diodes
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Diffraction and Gratings

Original Manuscript: May 14, 2012
Revised Manuscript: June 24, 2012
Manuscript Accepted: July 10, 2012
Published: July 13, 2012

Sun-Kyung Kim, Ho-Seok Ee, Kyung-Deok Song, and Hong-Gyu Park, "Design of out-coupling structures with metal-dielectric surface relief," Opt. Express 20, 17230-17236 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol.3(2), 160–175 (2007). [CrossRef]
  2. T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett.84(6), 855–857 (2004). [CrossRef]
  3. C. C. Kao, J. T. Chu, H. C. Kuo, S. C. Wang, and C. C. Yu, “Improvement of InGaN-GaN light-emitting diode performance with a nano-roughened p-GaN surface,” IEEE Photon. Technol. Lett.17(5), 983–985 (2005). [CrossRef]
  4. Y. Gao, T. Fujii, R. Sharma, K. Fujito, S. P. DenBaars, S. Nakamura, and E. L. Hu, “Roughening hexagonal surface morphology on laser lift-off (LLO) N-face GaN with simple photo-enhanced chemical wet etching,” Jpn. J. Appl. Phys.43(No. 5A), L637–L639 (2004). [CrossRef]
  5. A. David, T. Fujii, R. Sharma, K. McGroddy, S. Nakamura, S. P. DenBaars, E. L. Hu, C. Weisbuch, and H. Benisty, “Photonic-crystal GaN light-emitting diodes with tailored guided mode distribution,” Appl. Phys. Lett.88(6), 061124 (2006). [CrossRef]
  6. S.-K. Kim, H. K. Cho, D. K. Bae, J. S. Lee, H.-G. Park, and Y.-H. Lee, “Efficient GaN slab vertical light-emitting diode covered with a patterned high-index layer,” Appl. Phys. Lett.92(24), 241118 (2008). [CrossRef]
  7. H. K. Cho, J. Jang, J. H. Choi, J. Choi, J. Kim, J. S. Lee, B. Lee, Y. H. Choe, K. D. Lee, S. H. Kim, K. Lee, S. K. Kim, and Y. H. Lee, “Light extraction enhancement from nano-imprinted photonic crystal GaN-based blue light-emitting diodes,” Opt. Express14(19), 8654–8660 (2006). [CrossRef] [PubMed]
  8. J. J. Wierer, A. David, and M. M. Megens, “III-nitride photonic-crystal light-emitting diodes with high extraction efficiency,” Nat. Photonics3(3), 163–169 (2009). [CrossRef]
  9. S.-K. Kim, J.-W. Lee, H.-S. Ee, Y.-T. Moon, S.-H. Kwon, H. Kwon, and H.-G. Park, “High-efficiency vertical GaN slab light-emitting diodes using self-coherent directional emitters,” Opt. Express18(11), 11025–11032 (2010). [CrossRef] [PubMed]
  10. Y. C. Shen, J. J. Wierer, M. R. Krames, M. J. Ludowise, M. S. Misra, F. Ahmed, A. Y. Kim, G. O. Mueller, J. C. Bhat, S. A. Stockman, and P. S. Martin, “Optical cavity effects in InGaN/GaN quantum-well-heterostructure flip-chip light-emitting diodes,” Appl. Phys. Lett.82(14), 2221–2223 (2003). [CrossRef]
  11. E. F. Schubert, Y.-H. Wang, A. Y. Cho, L.-W. Tu, and G. J. Zydzik, “Resonant cavity light‐emitting diode,” Appl. Phys. Lett.60(8), 921–923 (1992). [CrossRef]
  12. C. Wiesmann, K. Bergenek, N. Linder, and U. T. Schwarz, “Photonic crystal LEDs -designing light extraction,” Laser Photonics. Rev.3(3), 262–286 (2009). [CrossRef]
  13. W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L. T. Romano, and N. M. Johnson, “Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off,” Appl. Phys. Lett.75(10), 1360–1362 (1999). [CrossRef]
  14. K.-M. Uang, S.-J. Wang, T.-M. Chen, W.-C. Lee, S.-L. Chen, Y.-Y. Wang, and H. Kuan, “Enhanced performance of vertical GaN-based light-emitting diodes with a current-blocking layer and electroplated nickel substrate,” Jpn. J. Appl. Phys.48(10), 102101 (2009). [CrossRef]
  15. K. Fujii, S. Lee, J.-S. Ha, H.-J. Lee, H.-J. Lee, S.-H. Lee, T. Kato, M.-W. Cho, and T. Yao, “Leakage current improvement of nitride-based light emitting diodes using CrN buffer layer and its vertical type application by chemical lift-off process,” Appl. Phys. Lett.94(24), 242108 (2009). [CrossRef]
  16. W. P. Huang and C. L. Xu, “Simulation of three-dimensional optical waveguides by a full-vector beam propagation method,” IEEE J. Quantum Electron.29(10), 2639–2649 (1993). [CrossRef]
  17. A. David, H. Benisty, and C. Weisbuch, “Optimization of light-diffracting photonic-crystals for high extraction efficiency LEDs,” J. Disp. Technol.3(2), 133–148 (2007). [CrossRef]
  18. A. Laubsch, M. Sabathil, J. Baur, M. Peter, and B. Hahn, “High-power and high-efficiency InGaN-based Light Emitters,” Electron. Lett.57, 79–87 (2010).
  19. S.-K. Kim, H. D. Song, H.-S. Ee, H. M. Choi, H. K. Cho, Y.-H. Lee, and H.-G. Park, “Metal mirror assisting light extraction from patterned AlGaInP light-emitting diodes,” Appl. Phys. Lett.94(10), 101102 (2009). [CrossRef]
  20. H. K. Cho, S.-K. Kim, D. K. Bae, B.-C. Kang, J. S. Lee, and Y.-H. Lee, “Laser liftoff GaN thin-film photonic crystal GaN-based light-emitting diodes,” IEEE Photon. Technol. Lett.20(24), 2096–2098 (2008). [CrossRef]
  21. S.-K. Kim, H.-S. Ee, W. Choi, S.-H. Kwon, J.-H. Kang, Y.-H. Kim, H. Kwon, and H.-G. Park, “Surface-plasmon-induced light absorption on a rough silver surface,” Appl. Phys. Lett.98(1), 011109 (2011). [CrossRef]
  22. Z. Xu, Y. Chen, M. R. Gartia, J. Jiang, and G. L. Liu, “Surface plasmon enhanced broadband spectrophotometry on black silver substrates,” Appl. Phys. Lett.98(24), 241904 (2011). [CrossRef]
  23. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.)21(34), 3504–3509 (2009). [CrossRef]
  24. W. H. Koo, S. M. Jeong, F. Araoka, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles,” Nat. Photonics4(4), 222–226 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited