OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 16 — Jul. 30, 2012
  • pp: 17271–17280

THz wave propagation in two-dimensional metallic photonic crystal with mechanically tunable photonic-bands

Jiro Kitagawa, Mitsuhiro Kodama, Shingo Koya, Yusaku Nishifuji, Damien Armand, and Yutaka Kadoya  »View Author Affiliations


Optics Express, Vol. 20, Issue 16, pp. 17271-17280 (2012)
http://dx.doi.org/10.1364/OE.20.017271


View Full Text Article

Enhanced HTML    Acrobat PDF (1384 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Transmission and dispersion relation of THz waves in two-dimensional photonic crystal (PC) composed of metal rods are studied by using finite-difference time-domain simulation and THz time-domain spectroscopy measurement. The PC is embedded in a parallel metal plate waveguide with an air gap between the PC and one of the plates. The photonic-band-gap well-defined at small air gap narrows systematically with opening the air gap and disappears when the air gap is 2 ∼ 3 times the rod height, where the two-dimensional nature of PC is destroyed. The mechanical tunability of photonic band structure would be useful in functional THz device.

© 2012 OSA

OCIS Codes
(160.5298) Materials : Photonic crystals
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Photonic Crystals

History
Original Manuscript: March 14, 2012
Revised Manuscript: July 5, 2012
Manuscript Accepted: July 5, 2012
Published: July 16, 2012

Citation
Jiro Kitagawa, Mitsuhiro Kodama, Shingo Koya, Yusaku Nishifuji, Damien Armand, and Yutaka Kadoya, "THz wave propagation in two-dimensional metallic photonic crystal with mechanically tunable photonic-bands," Opt. Express 20, 17271-17280 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-16-17271


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science284, 1819–1821 (1999). [CrossRef] [PubMed]
  2. R. V. Nair and R. Vijaya, “Photonic crystal sensors: an overview,” Prog. Quant. Electron.34, 89–134 (2010). [CrossRef]
  3. M. Notomi, A. Shinya, S. Mitsugi, G. Kira1, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express13, 2678–2687 (2005). [CrossRef] [PubMed]
  4. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432, 200–203 (2004). [CrossRef] [PubMed]
  5. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics1, 97–105 (2007). [CrossRef]
  6. S. Li, H.-W. Zhang, Q.-Y. Wen, Y.-Q. Song, W.-W. Ling, and Y.-X. Li, “Improved amplitude-frequency characteristics for T-splitter photonic crystal waveguides in terahertz regime,” Appl. Phys. B95, 745–749 (2009). [CrossRef]
  7. A. Bingham and D. Grischkowsky, “Terahertz 2-D photonic crystal waveguides,” IEEE Microw. Wireless Compon. Lett.18, 428–430 (2008). [CrossRef]
  8. G. D. L. Reyes, A. Quema, C. Ponseca, R. Pobre, R. Quiroga, S. Ono, H. Murakami, E. Estacio, N. Sarukura, K. Aosaki, Y. Sakane, and H. Sato, “Low-loss single-mode terahertz waveguiding using Cytop,” Appl. Phys. Lett.89, 211119 (2006). [CrossRef]
  9. C. M. Yee and M. S. Sherwin, “High-Q terahertz microcavities in silicon photonic crystal slabs,” Appl. Phys. Lett.94, 154104 (2009). [CrossRef]
  10. A. Bingham and D. Grischkowsky, “Terahertz two-dimensional high-Q photonic crystal waveguide cavities,” Opt. Lett.33, 348–350 (2008). [CrossRef] [PubMed]
  11. H. Shirai, E. Kishimoto, T. Kokuhata, H. Miyagawa, S. Koshiba, S. Nakanishi, H. Itoh, M. Hangyo, T. G. Kim, and N. Tsurumachi, “Enhancement and suppression of terahertz emission by a Fabry-Perot cavity structure with a nonlinear optical crystal,” Appl. Opt.48, 6934–6939 (2009). [CrossRef] [PubMed]
  12. T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett.85, 5173–5175 (2004). [CrossRef]
  13. L. Fekete, F. Kadlec, P. Kužel, and H. Němec, “Ultrafast opto-terahertz photonic crystal modulator,” Opt. Lett.32, 680–682 (2007). [CrossRef] [PubMed]
  14. R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett.26, 846–848 (2001). [CrossRef]
  15. A. Bingham, Y. Zhao, and D. Grischkowsky, “THz parallel plate photonic waveguides,” Appl. Phys. Lett.87, 051101 (2005). [CrossRef]
  16. E. S. Lee, J.-K. So, G.-S. Park, D. Kim, C.-S. Kee, and T.-I. Jeon, “Terahertz band gaps induced by metal grooves inside parallel-plate waveguides,” Opt. Express20, 6116–6123 (2012). [CrossRef] [PubMed]
  17. D. R. Smith, S. Schultz, N. Kroll, M. Sigalas, K. M. Ho, and C. M. Soukoulis, “Experimental and theoretical results for a two-dimensional metal photonic band-gap cavity,” Appl. Phys. Lett.65, 645–647 (1994). [CrossRef]
  18. H. Kitahara, N. Tsumura, H. Kondo, M. Takeda, J. W. Haus, Z. Yuan, N. Kawai, K. Sakoda, and K. Inoue, “Terahertz wave dispersion in two-dimensional photonic crystals,” Phys. Rev. B64, 045202 (2001). [CrossRef]
  19. K. Sakoda, “Symmetry, degeneracy, and uncoupled modes in two-dimensional photonic lattices,” Phys. Rev. B52, 7982–7986 (1995). [CrossRef]
  20. W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Measurement of the photon dispersion relation in two-dimensional ordered dielectric arrays,” J. Opt. Soc. Am. B10, 322–327 (1993). [CrossRef]
  21. S.-H. Kim, E. S. Lee, Y. B. Ji, and T.-I. Jeon, “Improvement of THz coupling using a tapered parallel-plate waveguide,” Opt. Express18, 1289–1295 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited