OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 16 — Jul. 30, 2012
  • pp: 17359–17366

Electrically tunable electroluminescence from SiNx-based light-emitting devices

Dongsheng Li, Feng Wang, Deren Yang, and Duanlin Que  »View Author Affiliations

Optics Express, Vol. 20, Issue 16, pp. 17359-17366 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1880 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Two obvious Gauss peaks are observed in SiNx-based light-emitting devices with silver nanoparticles deposited onto the luminous layer, both of which are blue shifted with the increase of injected current. The origin of these two peaks is discussed by means of the changes of their positions, relative intensities, and full width at half maximum. We attribute the blue-shift of both electroluminescence peaks to the improvement of carrier injection as carriers can be injected into higher energy levels along their corresponding band tails, which is also confirmed by the changes of the transport mechanism.

© 2012 OSA

OCIS Codes
(230.2090) Optical devices : Electro-optical devices
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(310.6860) Thin films : Thin films, optical properties
(350.4600) Other areas of optics : Optical engineering

ToC Category:
Optical Devices

Original Manuscript: May 24, 2012
Revised Manuscript: June 25, 2012
Manuscript Accepted: July 10, 2012
Published: July 16, 2012

Dongsheng Li, Feng Wang, Deren Yang, and Duanlin Que, "Electrically tunable electroluminescence from SiNx-based light-emitting devices," Opt. Express 20, 17359-17366 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N.-M. Park, C.-J. Choi, T.-Y. Seong, and S.-J. Park, “Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride,” Phys. Rev. Lett.86(7), 1355–1357 (2001). [CrossRef] [PubMed]
  2. R. Huang, H. Dong, D. Wang, K. Chen, H. Ding, X. Wang, W. Li, J. Xu, and Z. Ma, “Role of barrier layers in electroluminescence from SiN-based multilayer light-emitting devices,” Appl. Phys. Lett.92(18), 181106 (2008). [CrossRef]
  3. G.-R. Lin, Y.-H. Pai, C.-T. Lin, and C.-C. Chen, “Comparison on the electroluminescence of Si-rich SiNx and SiOx based light-emitting diodes,” Appl. Phys. Lett.96(26), 263514 (2010). [CrossRef]
  4. M. Wang, J. Huang, Z. Yuan, A. Anopchenko, D. Li, D. Yang, and L. Pavesi, “Light emission properties and mechanism of low-temperature prepared amorphous SiNX film. II. Defect states electroluminescence,” J. Appl. Phys.104(8), 083505 (2008). [CrossRef]
  5. D. Li, J. Huang, and D. Yang, “Enhanced electroluminescence of silicon-rich silicon nitride light-emitting devices by NH3 plasma and annealing treatment,” Physica E41(6), 920–922 (2009). [CrossRef]
  6. Z. H. Cen, T. P. Chen, Z. Liu, Y. Liu, L. Ding, M. Yang, J. I. Wong, S. F. Yu, and W. P. Goh, “Electrically tunable white-color electroluminescence from Si-implanted silicon nitride thin film,” Opt. Express18(19), 20439–20444 (2010). [CrossRef] [PubMed]
  7. R. Huang, D. Q. Wang, H. L. Ding, X. Wang, K. J. Chen, J. Xu, Y. Q. Guo, J. Song, and Z. Y. Ma, “Enhanced electroluminescence from SiN-based multilayer structure by laser crystallization of ultrathin amorphous Si-rich SiN layers,” Opt. Express18(2), 1144–1150 (2010). [CrossRef] [PubMed]
  8. C. Huh, K.-H. Kim, B. K. Kim, W. Kim, H. Ko, C.-J. Choi, and G. Y. Sung, “Enhancement in light emission efficiency of a silicon nanocrystal light-emitting diode by multiple-luminescent structures,” Adv. Mater. (Deerfield Beach Fla.)22(44), 5058–5062 (2010). [CrossRef] [PubMed]
  9. B.-H. Kim, C.-H. Cho, S.-J. Park, N.-M. Park, and G. Y. Sung, “Ni/Au contact to silicon quantum dot light-emitting diodes for the enhancement of carrier injection and light extraction efficiency,” Appl. Phys. Lett.89(6), 063509 (2006). [CrossRef]
  10. J. Warga, R. Li, S. N. Basu, and L. Dal Negro, “Electroluminescence from silicon-rich nitride/silicon superlattice structures,” Appl. Phys. Lett.93(15), 151116 (2008). [CrossRef]
  11. B.-H. Kim, C.-H. Cho, J.-S. Mun, M.-K. Kwon, T.-Y. Park, J.-S. Kim, C.-C. Byeon, J. Lee, and S.-J. Park, “Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons,” Adv. Mater. (Deerfield Beach Fla.)20(16), 3100–3104 (2008). [CrossRef]
  12. Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F. R. Zhu, and S. Fung, “Strong violet and green-yellow electroluminescence from silicon nitride thin films multiply implanted with Si ions,” Appl. Phys. Lett.94(4), 041102 (2009). [CrossRef]
  13. Z. H. Cen, T. P. Chen, L. Ding, Z. Liu, J. I. Wong, M. Yang, W. P. Goh, and S. Fung, “Influence of implantation dose on electroluminescence from Si-implanted silicon nitride thin films,” Appl. Phys., A Mater. Sci. Process.104(1), 239–245 (2011). [CrossRef]
  14. F. Wang, D. Li, D. Yang, and D. Que, “Enhancement of light-extraction efficiency of SiNx light emitting devices through a rough Ag island film,” Appl. Phys. Lett.100(3), 031113 (2012). [CrossRef]
  15. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  16. P. Cheng, D. Li, and D. Yang, “Influence of substrates in ZnO devices on the surface plasmon enhanced light emission,” Opt. Express16(12), 8896–8901 (2008). [CrossRef] [PubMed]
  17. J. R. Sheats, H. Antoniadis, M. Hueschen, W. Leonard, J. Miller, R. Moon, D. Roitman, and A. Stocking, “Organic electroluminescent devices,” Science273(5277), 884–888 (1996). [CrossRef] [PubMed]
  18. E. Jacques, L. Pichon, O. Debieu, and F. Gourbilleau, “Electrical behavior of MIS devices based on silicon nanoclusters embedded in SiOxNy and SiO2 films,” Nanoscale Res. Lett.6(1), 170 (2011). [CrossRef] [PubMed]
  19. Y. Yonamoto, Y. Inaba, and N. Akamatsu, “Compositional dependence of trap density and origin in thin silicon oxynitride film investigated using spin dependent Poole–Frenkel current,” Appl. Phys. Lett.98(23), 232905 (2011). [CrossRef]
  20. S. M. Sze, “Current transport and maximum dielectric strength of silicon nitride,” J. Appl. Phys.38(7), 2951–2956 (1967). [CrossRef]
  21. D. A. Neamen, Semiconductor Physics and Devices: Basic Principles, 3rd ed. (McGraw-Hill, 2003).
  22. A. A. Middleton and N. S. Wingreen, “Collective transport in arrays of small metallic dots,” Phys. Rev. Lett.71(19), 3198–3201 (1993). [CrossRef] [PubMed]
  23. W. Chandra and L. K. Ang, “Space charge limited current in a gap combined of free space and solid,” Appl. Phys. Lett.96(18), 183501 (2010). [CrossRef]
  24. T. Güngör and H. Tolunay, “Drift mobility measurements in a-SiNx: H,” J. Non-Cryst. Solids282(2–3), 197–202 (2001). [CrossRef]
  25. T. Shirasawa, K. Hayashi, S. Mizuno, S. Tanaka, K. Nakatsuji, F. Komori, and H. Tochihara, “Epitaxial silicon oxynitride layer on a 6H-SiC(0001) surface,” Phys. Rev. Lett.98(13), 136105 (2007). [CrossRef] [PubMed]
  26. J. Robertson and M. J. Powell, “Gap states in silicon-nitride,” Appl. Phys. Lett.44(4), 415–417 (1984). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited