OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 16 — Jul. 30, 2012
  • pp: 17374–17379

Experimental demonstration of the three phase shifted DFB semiconductor laser based on Reconstruction-Equivalent-Chirp technique

Yuechun Shi, Xiangfei Chen, Yating Zhou, Simin Li, Lianyan Li, and Yijun Feng  »View Author Affiliations


Optics Express, Vol. 20, Issue 16, pp. 17374-17379 (2012)
http://dx.doi.org/10.1364/OE.20.017374


View Full Text Article

Enhanced HTML    Acrobat PDF (1624 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A three phase shifted (3PS) distributed feedback (DFB) semiconductor laser based on Reconstruction-Equivalent-Chirp (REC) technique is experimentally demonstrated for the first time. The simulation results show that the performances of the equivalent 3PS DFB semiconductor laser are nearly the same as that of the true 3PS laser. However, it only changes the μm-level sampling structures but the seed grating is uniform. So, its cost of fabrication is low. The measurement results exhibit its good single longitudinal mode (SLM) operation even at high bias current and surrounding temperature.

© 2012 OSA

OCIS Codes
(140.3490) Lasers and laser optics : Lasers, distributed-feedback
(140.5960) Lasers and laser optics : Semiconductor lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: May 29, 2012
Revised Manuscript: July 8, 2012
Manuscript Accepted: July 8, 2012
Published: July 16, 2012

Citation
Yuechun Shi, Xiangfei Chen, Yating Zhou, Simin Li, Lianyan Li, and Yijun Feng, "Experimental demonstration of the three phase shifted DFB semiconductor laser based on Reconstruction-Equivalent-Chirp technique," Opt. Express 20, 17374-17379 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-16-17374


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Suematsu and K. Iga, “Semiconductor lasers in photonics,” J. Lightwave Technol.26(9), 1132–1144 (2008). [CrossRef]
  2. A. J. Lowery and H. Olesen, “Dynamics of mode-instabilities in quarter-wave-shifted DFB semiconductor lasers,” Electron. Lett.30(12), 965–967 (1994). [CrossRef]
  3. G. P. Agrawal, J. E. Geusic, and P. J. Anthony, “Distributed feedback lasers with multiple phase-shift regions,” Appl. Phys. Lett.53(3), 178–179 (1988). [CrossRef]
  4. M. Okai, N. Chinone, H. Taira, and T. Harada, “Corrugation-pitch-modulated phase-shifted DFB laser,” IEEE Photon. Technol. Lett.1(8), 200–201 (1989). [CrossRef]
  5. T. Fessant, “Large signal dynamics of distributed feedback lasers with spatial modulation of their coupling coefficient and grating pitch,” Appl. Phys. Lett.71(20), 2880–2882 (1997). [CrossRef]
  6. Y. Dong, T. Okuda, K. Sato, Y. Muroya, T. Sasaki, and K. Kobayashi, “Isolator-free 2.5-Gb/s 80-km transmission by directly modulated λ/8 phase-shifted DFB-LDs under negative feedback effect of mirror loss,” IEEE Photon. Technol. Lett.13(3), 245–247 (2001). [CrossRef]
  7. N. Chen, Y. Nakano, K. Okamoto, K. Tada, G. I. Morthier, and R. G. Baets, “Analysis, fabrication, and characterization of tunable DFB lasers with chirped gratings,” IEEE J. Sel. Top. Quantum Electron.3(2), 541–546 (1997). [CrossRef]
  8. T. Lee, C. E. Zah, R. Bhat, W. C. Young, B. Pathak, F. Favire, P. S. D. Lin, N. C. Andreadakis, C. Caneau, A. W. Rahjel, M. Koza, J. K. Gamelin, L. Curtis, D. D. Mahoney, and A. Lepore, “Multiwavelength DFB laser array transmitters for ONTC reconfigurable optical network testbed,” J. Lightwave Technol.14(6), 967–976 (1996). [CrossRef]
  9. H. Ishii, K. Kasaya, and H. Oohashi, “Spectral linewidth reduction in widely wavelength tunable DFB laser array,” IEEE J. Sel. Top. Quantum Electron.15(3), 514–520 (2009). [CrossRef]
  10. H. Hillmer and B. Klepser, “Low-cost edge-emitting DFB laser arrays for DWDM communication systems implemented by bent and titled waveguides,” IEEE J. Quantum Electron.40(10), 1377–1383 (2004). [CrossRef]
  11. D. M. Tennant and T. L. Koch, “Fabrication and uniformity issues in λ/4 shifted DFB laser arrays using e-beam generated contact grating masks,” Microelectron. Eng.32(1-4), 331–350 (1996). [CrossRef]
  12. J. Li, H. Wang, X. Chen, Z. Yin, Y. Shi, Y. Lu, Y. Dai, and H. Zhu, “Experimental demonstration of distributed feedback semiconductor lasers based on reconstruction-equivalent-chirp technology,” Opt. Express17(7), 5240–5245 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-7-5240 . [CrossRef] [PubMed]
  13. J. Li, X. Chen, N. Zhou, Z. Jing, X. Huang, L. Li, H. Wang, Y. Lu, and H. Zhu, “Monolithically integrated 30-wavelength DFB laser array,” Proc. of SPIE-OSA-IEEE 7631, 763104–1-763104–6 (2009).
  14. Y. Dai and X. Chen, “DFB semiconductor lasers based on reconstruction-equivalent-chirp technology,” Opt. Express15(5), 2348–2353 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-5-2348 . [CrossRef] [PubMed]
  15. T. Makino, “Transfer-Matrix analysis of the intensity and phase noise of multisection DFB semiconductor lasers,” IEEE J. Quantum Electron.27(11), 2404–2414 (1991). [CrossRef]
  16. W. Fang, A. Hsu, S. L. Chuang, T. Tanbun-Ek, and A. M. Sergent, “Measurement and Modeling of distributed-Feedback lasers with Spatial Hole Burning,” IEEE J. Sel. Top. Quantum Electron.3(2), 547–554 (1997). [CrossRef]
  17. G. P. Li, T. Makino, A. Sarangan, and W. Huang, “16-Wavelength gain-coupled DFB laser array with fine tunability,” IEEE Photon. Technol. Lett.8(1), 22–24 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited