OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 16 — Jul. 30, 2012
  • pp: 17393–17401

Longitudinally-graded optical fibers

A. Evert, A. James, T. Hawkins, P. Foy, R. Stolen, P. Dragic, L. Dong, R. Rice, and J. Ballato  »View Author Affiliations


Optics Express, Vol. 20, Issue 16, pp. 17393-17401 (2012)
http://dx.doi.org/10.1364/OE.20.017393


View Full Text Article

Enhanced HTML    Acrobat PDF (1482 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical fibers have become ubiquitous tools for the creation, propagation, manipulation, and detection of light. However, while the intensity of light propagating through the fiber can increase or decrease along the length through amplification or attenuation, respectively, the properties of the fiber itself generally do not, thus removing an opportunity to further control the behavior of light and performance of fiber-based devices. Shown here are optical fibers that exhibit significant changes in their longitudinal optical properties, specifically a tailored longitudinal numerical aperture change of about 12% over less than 20 meters of length. This is about 1900 times greater than previously reported. The Brillouin gain coefficient was found to decrease by over 6 dB relative to a standard commercial single mode fiber. Next generation analogs are expected to exhibit more than a 10 dB reduction in SBS gain using larger, yet still reasonably manufacturable gradients over practical lengths.

© 2012 OSA

OCIS Codes
(060.2290) Fiber optics and optical communications : Fiber materials
(060.2310) Fiber optics and optical communications : Fiber optics
(160.2290) Materials : Fiber materials

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: June 1, 2012
Revised Manuscript: July 5, 2012
Manuscript Accepted: July 6, 2012
Published: July 16, 2012

Citation
A. Evert, A. James, T. Hawkins, P. Foy, R. Stolen, P. Dragic, L. Dong, R. Rice, and J. Ballato, "Longitudinally-graded optical fibers," Opt. Express 20, 17393-17401 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-16-17393


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Bogatyrev, M. Bubnov, E. Dianov, A. Kurkov, P. Mamyshev, A. Prokhorov, S. Rumyantsev, V. Semenov, S. Semenov, A. Sysoliatin, S. Chernikov, A. Gur'yanov, G. Devyatykh, and S. Miroshnichenko, “A single-mode fiber with chromatic dispersion varying along the length,” J. Lightwave Technol. 9(5), 561–566 (1991). [CrossRef]
  2. J. Hansryd, F. Dross, M. Westlund, P. Andrekson, and S. Knudsen, “Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution,” J. Lightwave Technol. 19(11), 1691–1697 (2001). [CrossRef]
  3. N. Yoshizawa, T. Horiguchi, and T. Kurashima, “Proposal for stimulated Brillouin-scattering suppression by fiber cabling,” Electron. Lett. 27(12), 1100–1101 (1991). [CrossRef]
  4. M. Li, S. Li, and D. Nolan, “Nonlinear fibers for signal processing using optical Kerr effects,” J. Lightwave Technol. 23(11), 3606–3614 (2005). [CrossRef]
  5. J. Boggio, J. Marconi, and F. Fragnito, “Experimental and numerical investigation of the SBS-threshold increase in an optical fiber by applying strain distributions,” J. Lightwave Technol. 23(11), 3808–3814 (2005). [CrossRef]
  6. K. Nakajima, M. Ohashi, K. Shiraki, T. Horiguchi, K. Kurokawa, and Y. Miyajima, “Four-wave mixing suppression effect of dispersion distributed fibers,” J. Lightwave Technol. 17(10), 1814–1822 (1999). [CrossRef]
  7. R. Stolen, “Polarization Effects in Fiber Raman and Brillouin Lasers,” IEEE J. Quantum Electron. 15(10), 1157–1160 (1979). [CrossRef]
  8. K. Shiraki, M. Ohashi, and M. Tateda, “Performance of strain-free stimulated Brillouin scattering suppression fiber,” J. Lightwave Technol. 14(4), 549–554 (1996). [CrossRef]
  9. M. Ohashi and M. Tateda, “Design of strain-free-fiber with nonuniform dopant concentration for stimulated Brillouin scattering suppression,” J. Lightwave Technol. 11(12), 1941–1945 (1993). [CrossRef]
  10. R. Rice, M. Wickham, H. Komine, P. Livingston, P. Thielen, and C. Asman, “Optical fiber amplifier and methods of making the same,” US Patent Application US2010/0238538 A1 (September 23, 2010).
  11. A. Yablon, “Multi-wavelength optical fiber refractive index profiling by spatially resolved Fourier transform spectroscopy,” J. Lightwave Technol. 28(4), 360–364 (2010). [CrossRef]
  12. R. Tkach, A. Chraplyvy, and R. Derosier, “Spontaneous Brillouin scattering for single-mode fiber characterization,” Electron. Lett. 22(19), 1011–1013 (1986). [CrossRef]
  13. P. Dragic, “Estimating the effect of Ge doping on the acoustic damping coefficient via a highly Ge-doped MCVD silica fiber,” J. Opt. Soc. Am. B 26(8), 1614–1620 (2009). [CrossRef]
  14. B. Ward and J. Spring, “Finite element analysis of Brillouin gain in SBS-suppressing optical fibers with non-uniform acoustic velocity profiles,” Opt. Express 17(18), 15685–15699 (2009). [CrossRef] [PubMed]
  15. E. Dianov and V. Mashinsky, “Germania-based core optical fibers,” J. Lightwave Technol. 23(11), 3500–3508 (2005). [CrossRef]
  16. K. Oh and U. Paek, Silica Optical Fiber Technology for Devices and Components (Wiley & Sons, New York, 2012).
  17. E. Bochove and S. Shakir, “Analysis of a spatial-filtering passive fiber laser beam combining system,” IEEE J. Sel. Top. Quantum Electron. 15(2), 320–327 (2009). [CrossRef]
  18. D. Marcuse and R. Derosier, “Mode conversion caused by diameter changes of a round dielectric waveguide,” Bell Syst. Tech. J. 48, 3217–3232 (1969).
  19. G. E. Town and J. T. Lizier, “Tapered holey fibers for spot-size and numerical-aperture conversion,” Opt. Lett. 26(14), 1042–1044 (2001). [CrossRef] [PubMed]
  20. T. A. Birks, W. J. Wadsworth, and P. S. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25(19), 1415–1417 (2000). [CrossRef] [PubMed]
  21. N. G. Broderick, “Method for pulse transformations using dispersion varying optical fibre tapers,” Opt. Express 18(23), 24060–24069 (2010). [CrossRef] [PubMed]
  22. C. Giles, “Lightwave applications of fiber Bragg gratings,” J. Lightwave Technol. 15(8), 1391–1404 (1997). [CrossRef]
  23. K. O. Hill, F. Bilodeau, B. Malo, T. Kitagawa, S. Thériault, D. C. Johnson, J. Albert, and K. Takiguchi, “Chirped in-fiber Bragg gratings for compensation of optical-fiber dispersion,” Opt. Lett. 19(17), 1314–1316 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited