OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 16 — Jul. 30, 2012
  • pp: 17480–17495

Spatial and temporal coherence properties of single free-electron laser pulses

A. Singer, F. Sorgenfrei, A. P. Mancuso, N. Gerasimova, O. M. Yefanov, J. Gulden, T. Gorniak, T. Senkbeil, A. Sakdinawat, Y. Liu, D. Attwood, S. Dziarzhytski, D. D. Mai, R. Treusch, E. Weckert, T. Salditt, A. Rosenhahn, W. Wurth, and I. A. Vartanyants  »View Author Affiliations


Optics Express, Vol. 20, Issue 16, pp. 17480-17495 (2012)
http://dx.doi.org/10.1364/OE.20.017480


View Full Text Article

Enhanced HTML    Acrobat PDF (1720 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The experimental characterization of the spatial and temporal coherence properties of the free-electron laser in Hamburg (FLASH) at a wavelength of 8.0 nm is presented. Double pinhole diffraction patterns of single femtosecond pulses focused to a size of about 10×10 μm2 were measured. A transverse coherence length of 6.2 ± 0.9 μm in the horizontal and 8.7 ± 1.0 μm in the vertical direction was determined from the most coherent pulses. Using a split and delay unit the coherence time of the pulses produced in the same operation conditions of FLASH was measured to be 1.75 ± 0.01 fs. From our experiment we estimated the degeneracy parameter of the FLASH beam to be on the order of 1010 to 1011, which exceeds the values of this parameter at any other source in the same energy range by many orders of magnitude.

© 2012 OSA

OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(140.2600) Lasers and laser optics : Free-electron lasers (FELs)

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: June 1, 2012
Revised Manuscript: June 29, 2012
Manuscript Accepted: July 2, 2012
Published: July 17, 2012

Citation
A. Singer, F. Sorgenfrei, A. P. Mancuso, N. Gerasimova, O. M. Yefanov, J. Gulden, T. Gorniak, T. Senkbeil, A. Sakdinawat, Y. Liu, D. Attwood, S. Dziarzhytski, D. D. Mai, R. Treusch, E. Weckert, T. Salditt, A. Rosenhahn, W. Wurth, and I. A. Vartanyants, "Spatial and temporal coherence properties of single free-electron laser pulses," Opt. Express 20, 17480-17495 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-16-17480


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Ackermann, G. Asova, V. Ayvazyan, A. Azima, N. Baboi, J. Bähr, V. Balandin, B. Beutner, A. Brandt, A. Bolzmann, R. Brinkmann, O. I. Brovko, M. Castellano, P. Castro, L. Catani, E. Chiadroni, S. Choroba, A. Cianchi, J. T. Costello, D. Cubaynes, J. Dardis, W. Decking, H. Delsim-Hashemi, A. Delserieys, G. Di Pirro, M. Dohlus, S. Düsterer, A. Eckhardt, H. T. Edwards, B. Faatz, J. Feldhaus, K. Flöttmann, J. Frisch, L. Fröhlich, T. Garvey, U. Gensch, C. Gerth, M. Görler, N. Golubeva, H. J. Grabosch, M. Grecki, O. Grimm, K. Hacker, U. Hahn, J. H. Han, K. Honkavaara, T. Hott, M. Hüning, Y. Ivanisenko, E. Jaeschke, W. Jalmuzna, T. Jezynski, R. Kammering, V. Katalev, K. Kavanagh, E. T. Kennedy, S. Khodyachykh, K. Klose, V. Kocharyan, M. Körfer, M. Kollewe, W. Koprek, S. Korepanov, D. Kostin, M. Krassilnikov, G. Kube, M. Kuhlmann, C. L. S. Lewis, L. Lilje, T. Limberg, D. Lipka, F. Löhl, H. Luna, M. Luong, M. Martins, M. Meyer, P. Michelato, V. Miltchev, W. D. Möller, L. Monaco, W. F. O. Müller, O. Napieralski, O. Napoly, P. Nicolosi, D. Nölle, T. Nuñez, A. Oppelt, C. Pagani, R. Paparella, N. Pchalek, J. Pedregosa-Gutierrez, B. Petersen, B. Petrosyan, G. Petrosyan, L. Petrosyan, J. Pflüger, E. Plönjes, L. Poletto, K. Pozniak, E. Prat, D. Proch, P. Pucyk, P. Radcliffe, H. Redlin, K. Rehlich, M. Richter, M. Roehrs, J. Roensch, R. Romaniuk, M. Ross, J. Rossbach, V. Rybnikov, M. Sachwitz, E. L. Saldin, W. Sandner, H. Schlarb, B. Schmidt, M. Schmitz, P. Schmüser, J. R. Schneider, E. A. Schneidmiller, S. Schnepp, S. Schreiber, M. Seidel, D. Sertore, A. V. Shabunov, C. Simon, S. Simrock, E. Sombrowski, A. A. Sorokin, P. Spanknebel, R. Spesyvtsev, L. Staykov, B. Steffen, F. Stephan, F. Stulle, H. Thom, K. Tiedtke, M. Tischer, S. Toleikis, R. Treusch, D. Trines, I. Tsakov, E. Vogel, T. Weiland, H. Weise, M. Wellhöfer, M. Wendt, I. Will, A. Winter, K. Wittenburg, W. Wurth, P. Yeates, M. V. Yurkov, I. Zagorodnov, and K. Zapfe, “Operation of a free-electron laser from the extreme ultraviolet to the water window,” Nat. Photonics1, 336–342 (2007). [CrossRef]
  2. P. Emma, R. Akre, J. Arthur, R. Bionta, C. Bostedt, J. Bozek, A. Brachmann, P. Bucksbaum, R. Coffee, F. J. Decker, Y. Ding, D. Dowell, S. Edstrom, A. Fisher, J. Frisch, S. Gilevich, J. Hastings, G. Hays, P. Hering, Z. Huang, R. Iverson, H. Loos, M. Messerschmidt, A. Miahnahri, S. Moeller, H. D. Nuhn, G. Pile, D. Ratner, J. Rzepiela, D. Schultz, T. Smith, P. Stefan, H. Tompkins, J. Turner, J. Welch, W. White, J. Wu, G. Yocky, and J. Galayda, “First lasing and operation of an angstrom-wavelength free-electron laser,” Nat. Photonics4, 641–647 (2010). [CrossRef]
  3. J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of x-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,” Nature400, 342–344 (1999). [CrossRef]
  4. M. A. Pfeifer, G. J. Williams, I. A. Vartanyants, R. Harder, and I. K. Robinson, “Three-dimensional mapping of a deformation field inside a nanocrystal,” Nature442, 63–66 (2006). [CrossRef] [PubMed]
  5. H. N. Chapman, A. Barty, M. J. Bogan, S. Boutet, M. Frank, S. P. Hau-Riege, S. Marchesini, B. W. Woods, S. Bajt, W. H. Benner, R. A. London, E. Plönjes, M. Kuhlmann, R. Treusch, S. Düsterer, T. Tschentscher, J. R. Schneider, E. Spiller, T. Möller, C. Bostedt, M. Hoener, D. A. Shapiro, K. O. Hodgson, D. Van der Spoel, F. Burmeister, M. Bergh, C. Caleman, G. Huldt, M. M. Seibert, F. R. N. C. Maia, R. W. Lee, A. Szöke, N. Timneanu, and J. Hajdu, “Femtosecond diffractive imaging with a soft-x-ray free-electron laser,” Nature Phys.2, 839–843 (2006). [CrossRef]
  6. K. A. Nugent, “Coherent methods in the x-ray sciences,” Adv. Phys.59, 1–99 (2010). [CrossRef]
  7. S. Eisebitt, J. Lüning, W. F. Schlotter, M. Lörgen, O. Hellwig, W. Eberhardt, and J. Stöhr, “Lensless imaging of magnetic nanostructures by x-ray spectroholography,” Nature432, 885–888 (2004). [CrossRef] [PubMed]
  8. H. N. Chapman, P. Fromme, A. Barty, T. A. White, R. A. Kirian, A. Aquila, M. S. Hunter, J. Schulz, D. P. DePonte, U. Weierstall, R. B. Doak, F. R. N. C. Maia, A. V. Martin, I. Schlichting, L. Lomb, N. Coppola, R. L. Shoeman, S. W. Epp, R. Hartmann, D. Rolles, A. Rudenko, L. Foucar, N. Kimmel, G. Weidenspointner, P. Holl, M. Liang, M. Barthelmess, C. Caleman, S. Boutet, M. J. Bogan, J. Krzywinski, C. Bostedt, S. Bajt, L. Gumprecht, B. Rudek, B. Erk, C. Schmidt, A. Hömke, C. Reich, D. Pietschner, L. Strüder, G. Hauser, H. Gorke, J. Ullrich, S. Herrmann, G. Schaller, F. Schopper, H. Soltau, K. U. Kühnel, M. Messerschmidt, J. D. Bozek, S. P. Hau-Riege, M. Frank, C. Y. Hampton, R. G. Sierra, D. Starodub, G. J. Williams, J. Hajdu, N. Timneanu, M. M. Seibert, J. Andreasson, A. Rocker, O. Jönsson, M. Svenda, S. Stern, K. Nass, R. Andritschke, C. D. Schröter, F. Krasniqi, M. Bott, K. E. Schmidt, X. Wang, I. Grotjohann, J. M. Holton, T. R. M. Barends, R. Neutze, S. Marchesini, R. Fromme, S. Schorb, D. Rupp, M. Adolph, T. Gorkhover, I. Andersson, H. Hirsemann, G. Potdevin, H. Graafsma, B. Nilsson, and J. C. H. Spence, “Femtosecond x-ray protein nanocrystallography,” Nature470, 73–77 (2011). [CrossRef] [PubMed]
  9. M. Seibert, T. Ekeberg, F. R. N. C. Maia, M. Svenda, J. Andreasson, O. Jönsson, D. Odic̀, B. Iwan, A. Rocker, D. Westphal, M. Hantke, D. P. DePonte, A. Barty, J. Schulz, L. Gumprecht, N. Coppola, A. Aquila, M. Liang, T. A. White, A. Martin, C. Caleman, S. Stern, C. Abergel, V. Seltzer, J. Claverie, C. Bostedt, J. D. Bozek, S. Boutet, A. A. Miahnahri, M. Messerschmidt, J. Krzywinski, G. Williams, K. O. Hodgson, M. J. Bogan, C. Y. Hampton, R. G. Sierra, D. Starodub, I. Andersson, S. Bajt, M. Barthelmess, J. C. H. Spence, P. Fromme, U. Weierstall, R. Kirian, M. Hunter, R. B. Doak, S. Marchesini, S. P. Hau-Riege, M. Frank, R. L. Shoeman, L. Lomb, S. W. Epp, R. Hartmann, D. Rolles, A. Rudenko, C. Schmidt, L. Foucar, N. Kimmel, P. Holl, B. Rudek, B. Erk, A. Hömke, C. Reich, D. Pietschner, G. Weidenspointner, L. Strüder, G. Hauser, H. Gorke, J. Ullrich, I. Schlichting, S. Herrmann, G. Schaller, F. Schopper, H. Soltau, K. Kühnel, R. Andritschke, C. Schröter, F. Krasniqi, M. Bott, S. Schorb, D. Rupp, M. Adolph, T. Gorkhover, H. Hirsemann, G. Potdevin, H. Graafsma, B. Nilsson, H. N. Chapman, and J. Hajdu, “Single mimivirus particles intercepted and imaged with an x-ray laser,” Nature470, 78–81 (2011). [CrossRef] [PubMed]
  10. A. P. Mancuso, O. M. Yefanov, and I. A. Vartanyants, “Coherent diffractive imaging of biological samples at synchrotron and free electron laser facilities,” J. Biotechnol. 149, 229–237 (2010). [CrossRef] [PubMed]
  11. I. A. Vartanyants, I. K. Robinson, I. McNulty, C. David, P. Wochner, and T. Tschentscher, “Coherent x-ray scattering and lensless imaging at the european XFEL facility,” J. Synchrotron Radiat.14, 453–470 (2007). [CrossRef] [PubMed]
  12. L. Young, E. P. Kanter, B. Krässig, Y. Li, A. M. March, S. T. Pratt, R. Santra, S. H. Southworth, N. Rohringer, L. F. Dimauro, G. Doumy, C. A. Roedig, N. Berrah, L. Fang, M. Hoener, P. H. Bucksbaum, J. P. Cryan, S. Ghimire, J. M. Glownia, D. A. Reis, J. D. Bozek, C. Bostedt, and M. Messerschmidt, “Femtosecond electronic response of atoms to ultra-intense x-rays,” Nature466, 56–61 (2010). [CrossRef] [PubMed]
  13. L. W. Whitehead, G. J. Williams, H. M. Quiney, D. J. Vine, R. A. Dilanian, S. Flewett, K. A. Nugent, A. G. Peele, E. Balaur, and I. McNulty, “Diffractive imaging using partially coherent x-rays,” Phys. Rev. Lett.103, 243902 (2009). [CrossRef]
  14. B. Abbey, L. W. Whitehead, H. M. Quiney, D. J. Vine, G. A. Cadenazzi, C. A. Henderson, K. A. Nugent, E. Balaur, C. T. Putkunz, A. G. Peele, G. J. Williams, and I. McNulty, “Lensless imaging using broadband x-ray sources,” Nat. Photon.5, 420–424 (2011). [CrossRef]
  15. Y. H. Jiang, T. Pfeifer, A. Rudenko, O. Herrwerth, L. Foucar, M. Kurka, K. U. Kühnel, M. Lezius, M. F. Kling, X. Liu, K. Ueda, S. Düsterer, R. Treusch, C. D. Schröter, R. Moshammer, and J. Ullrich, “Temporal coherence effects in multiple ionization of N2 via XUV pump-probe autocorrelation,” Phys. Rev. A82, 041403 (2010). [CrossRef]
  16. http://hasylab.desy.de/facilities/flash/publications/selected_publications/index_eng.html
  17. A. A. Sorokin, S. V. Bobashev, T. Feigl, K. Tiedtke, H. Wabnitz, and M. Richter, “Photoelectric effect at ultrahigh intensities,” Phys. Rev. Lett.99, 213002 (2007). [CrossRef]
  18. K. Honkavaara, B. Faatz, J. Feldhaus, S. Schreiber, R. Treusch, and J. Rossbach, “FLASH upgrade,” First International Particle Accelerator Conference, IPAC’10, Kyoto, Japan, (2010).
  19. A. Singer, I. A. Vartanyants, M. Kuhlmann, S. Düsterer, R. Treusch, and J. Feldhaus, “Transverse-coherence properties of the free-electron-laser FLASH at DESY,” Phys. Rev. Lett.101, 254801 (2008). [CrossRef] [PubMed]
  20. I. A. Vartanyants, A. P. Mancuso, A. Singer, O. M. Yefanov, and J. Gulden, “Coherence measurements and coherent diffractive imaging at FLASH,” J. Phys. B: At., Mol. Opt. Phys.43, 194016 (2010).
  21. S. Roling, B. Siemer, M. Wöstmann, H. Zacharias, R. Mitzner, A. Singer, K. Tiedtke, and I. A. Vartanyants, “Temporal and spatial coherence properties of free-electron-laser pulses in the extreme ultraviolet regime,” Phys. Rev. ST Accel. Beams14, 080701 (2011). [CrossRef]
  22. E. L. Saldin, E. A. Schneidmiller, and M. V. Yurkov, The Physics of Free Electron Lasers (Springer, 2010).
  23. I. A. Vartanyants, A. Singer, A. P. Mancuso, O. M. Yefanov, A. Sakdinawat, Y. Liu, E. Bang, G. J. Williams, G. Cadenazzi, B. Abbey, H. Sinn, D. Attwood, K. A. Nugent, E. Weckert, T. Wang, D. Zhu, B. Wu, C. Graves, A. Scherz, J. J. Turner, W. F. Schlotter, M. Messerschmidt, J. Lüning, Y. Acremann, P. Heimann, D. C. Mancini, V. Joshi, J. Krzywinski, R. Soufli, M. Fernandez-Perea, S. Hau-Riege, A. G. Peele, Y. Feng, O. Krupin, S. Moeller, and W. Wurth, “Coherence properties of individual femtosecond pulses of an x-ray free-electron laser,” Phys. Rev. Lett.107, 144801 (2011). [CrossRef] [PubMed]
  24. J. W. Goodman, Statistical Optics (Wiley, New York, 2000).
  25. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995).
  26. W. F. Schlotter, F. Sorgenfrei, T. Beeck, M. Beye, S. Gieschen, H. Meyer, M. Nagasono, A. Föhlisch, and W. Wurth, “Longitudinal coherence measurements of an extreme-ultraviolet free-electron laser,” Opt. Lett.35, 372–374 (2010). [CrossRef] [PubMed]
  27. F. Sorgenfrei, W. F. Schlotter, T. Beeck, M. Nagasono, S. Gieschen, H. Meyer, A. Föhlisch, M. Beye, and W. Wurth, “The extreme ultraviolet split and femtosecond delay unit at the plane grating monochromator beamline PG2 at FLASH,” Rev. Sci. Instr.81, 043107 (2010). [CrossRef]
  28. R. Mitzner, B. Siemer, M. Neeb, T. Noll, F. Siewert, S. Roling, M. Rutkowski, A. A. Sorokin, M. Richter, P. Juranic, K. Tiedtke, J. Feldhaus, W. Eberhardt, and H. Zacharias, “Spatio-temporal coherence of free electron laser pulses in the soft x-ray regime,” Opt. Express16, 19909–19919 (2009). [CrossRef]
  29. E. L. Saldin, E. A. Schneidmiller, and M. V. Yurkov, “Coherence properties of the radiation from x-ray free electron laser,” Opt. Commun.281, 1179–1188 (2008). [CrossRef]
  30. I. A. Vartanyants and A. Singer, “Coherence properties of hard x-ray synchrotron sources and x-ray free-electron lasers,” New J. Phys.12, 035004 (2010). [CrossRef]
  31. R. A. Bartels, A. Paul, H. Green, H. C. Kapteyn, M. M. Murnane, S. Backus, I. P. Christov, Y. Liu, D. Attwood, and C. Jacobsen, “Generation of spatially coherent light at extreme ultraviolet wavelengths,” Science297, 376–378 (2002). [PubMed]
  32. B. W. J. McNeil and N. R. Thompson, “X-ray free-electron lasers,” Nat. Photon.12, 814–821, (2010). [CrossRef]
  33. F. Staier, “Entwicklung, Bau und Test einer UHV Röntgenstreukammer für die digitale in-line Holographie,” PhD Thesis (University of Heidelberg, 2009).
  34. M. Wellhöfer, M. Martins, W. Wurth, A. Sorokin, and M. Richter, “Performance of the monochromator beamline at FLASH,” J. Opt. A, Pure Appl. Opt.9, 749–756 (2007). [CrossRef]
  35. The assumptions used in deriving Eq. (4) were well satisfied in our experimental geometry. The maximum time delay introduced through the path length difference was τmax ≈ 0.6 fs and was smaller than the temporal coherence length τc = (1.75 ± 0.0.01) fs measured by the split and delay unit (see below). Therefore, we could safely assume that in transverse coherence measurements |γ12eff(τ)|≈|γ12eff(0)| and α12(τ) ≈ α12(0).
  36. An unconstrained fit yields a value of |γ11eff|≈0.8 in both directions and provides slightly larger values for the transverse coherence length. We attribute this to inhomogenities in the transmission through the pinholes.
  37. J. Chalupsky, J. Krzywinski, L. Juha, V. Hajkova, J. Cihelka, T. Burian, L. Vyain, J. Gaudin, A. Gleeson, M. Jurek, A. R. Khorsand, D. Klinger, H. Wabnitz, R. Sobierajski, M. Störmer, K. Tiedtke, and S. Toleikis, “Spot size characterization of focused non-Gaussian x-ray laser beams,” Opt. Express18, 27836–27845 (2010). [CrossRef]
  38. We attribute this positional uncertainty to both, instabilities of the sample stages and beam positional jitter.
  39. In our experiment the maximum of |γ12(τ)| did not reach unity but rather a value of 0.14. The reason for this is that the full beam was split in the middle and overlapped again meaning that parts of the center of the beam were overlapped with parts of the edge of the beam (see [27] for details). This corresponds to a large pinhole separation in a Young’s double pinhole experiment yielding reduced values of |γ12(0)|. The beam was not spatially filtered with the apertures of the PG2 beamline, which would increase the contrast. Additionally, Ce:YAG crystals are known to saturate at high intensities [40], which can result in a degradation of fringe visibility.
  40. D. P. Bernstein, Y. Acremann, A. Scherz, M. Burkhardt, J. Stöhr, M. Beye, W. F. Schlotter, T. Beeck, F. Sorgenfrei, A. Pietzsch, W. Wurth, and A. Föhlisch, “Near edge x-ray absorption fine structure spectroscopy with x-ray free-electron lasers,” Appl. Phys. Lett.95, 134102 (2009). [CrossRef]
  41. We used the following FLASH operation parameters [42, 43] K = 1.23, λw = 27.3 mm, I = 2200 ± 300 A, γ = 1741, σ⊥ = 95 ± 35 μm, and AJJ = 0.83 to calculate the FEL parameter ρ in Eq. (11). The error is derived by applying the Gaussian error propagation law.
  42. http://flash.desy.de/accelerator/ , access December 2011.
  43. B. Faatz, private communication.