OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 16 — Jul. 30, 2012
  • pp: 17496–17502

Distributed feedback laser diode integrated with distributed Bragg reflector for continuous-wave terahertz generation

Namje Kim, Sang-Pil Han, Han-Cheol Ryu, Hyunsung Ko, Jeong-Woo Park, Donghun Lee, Min Yong Jeon, and Kyung Hyun Park  »View Author Affiliations

Optics Express, Vol. 20, Issue 16, pp. 17496-17502 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1516 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A widely tunable dual mode laser diode with a single cavity structure is demonstrated. This novel device consists of a distributed feedback (DFB) laser diode and distributed Bragg reflector (DBR). Micro-heaters are integrated on the top of each section for continuous and independent wavelength tuning of each mode. By using a single gain medium in the DFB section, an effective common optical cavity and common modes are realized. The laser diode shows a wide tunability of the optical beat frequency, from 0.48 THz to over 2.36 THz. Continuous wave THz radiation is also successfully generated with low-temperature grown InGaAs photomixers from 0.48 GHz to 1.5 THz.

© 2012 OSA

OCIS Codes
(140.3600) Lasers and laser optics : Lasers, tunable
(140.5960) Lasers and laser optics : Semiconductor lasers
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Lasers and Laser Optics

Original Manuscript: June 1, 2012
Revised Manuscript: July 11, 2012
Manuscript Accepted: July 11, 2012
Published: July 17, 2012

Namje Kim, Sang-Pil Han, Han-Cheol Ryu, Hyunsung Ko, Jeong-Woo Park, Donghun Lee, Min Yong Jeon, and Kyung Hyun Park, "Distributed feedback laser diode integrated with distributed Bragg reflector for continuous-wave terahertz generation," Opt. Express 20, 17496-17502 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics1(2), 97–105 (2007). [CrossRef]
  2. I. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the dawn of a new era in terahertz technology,” Proc. IEEE95(8), 1611–1623 (2007). [CrossRef]
  3. I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” IEEE J. Quantum Electron.41(5), 717–728 (2005). [CrossRef]
  4. N. Kim, J. Shin, E. Sim, C. W. Lee, D.-S. Yee, M. Y. Jeon, Y. Jang, and K. H. Park, “Monolithic dual-mode distributed feedback semiconductor laser for tunable continuous-wave terahertz generation,” Opt. Express17(16), 13851–13859 (2009). [CrossRef] [PubMed]
  5. J. R. Demers, R. T. Logan, Jr., and E. R. Brown, “An optically integrated coherent frequency-domain THz spectrometer with signal-to-noise ratio up to 80 dB,” in Microwave Photonics Tech. Digest, Victoria, Canada (2007), pp. 92–95.
  6. B. Sartorius, M. Schlak, D. Stanze, H. Roehle, H. Künzel, D. Schmidt, H.-G. Bach, R. Kunkel, and M. Schell, “Continuous wave terahertz systems exploiting 1.5 microm telecom technologies,” Opt. Express17(17), 15001–15007 (2009). [CrossRef] [PubMed]
  7. P. J. Moore, Z. J. Chaboyer, and G. Das, “Tunable dual-wavelength fiber laser,” Opt. Fiber Technol.15(4), 377–379 (2009). [CrossRef]
  8. M. Y. Jeon, N. Kim, S.-P. Han, H. Ko, H.-C. Ryu, D.-S. Yee, and K. H. Park, “Rapidly frequency-swept optical beat source for continuous wave terahertz generation,” Opt. Express19(19), 18364–18371 (2011). [CrossRef] [PubMed]
  9. N. Kim, S.-P. Han, H. Ko, Y. A. Leem, H.-C. Ryu, C. W. Lee, D. Lee, M. Y. Jeon, S. K. Noh, and K. H. Park, “Tunable continuous-wave terahertz generation/detection with compact 1.55 μm detuned dual-mode laser diode and InGaAs based photomixer,” Opt. Express19(16), 15397–15403 (2011). [CrossRef] [PubMed]
  10. K. H. Park, N. Kim, H. Ko, H.-C. Ryu, J.-W. Park, S.-P. Han, and M. Y. Jeon, “Portable terahertz spectrometer with InP related semiconductor photonic devices,” Proc. SPIE8261, 826103, 826103-10 (2012). [CrossRef]
  11. M. Tani, O. Morikawa, S. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers,” Semicond. Sci. Technol.20(7), S151–S163 (2005). [CrossRef]
  12. N. Karpowicz, H. Zhong, C. Zhang, K.-I. Lin, J.-S. Hwang, J. Xu, and X.-C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett.86(5), 054105 (2005). [CrossRef]
  13. B. Gershgorin, V. Yu. Kachorovskii, Y. V. Lvov, and M. S. Shur, “Field effect transistor as heterodyne terahertz detector,” Electron. Lett.44(17), 1036–1037 (2008). [CrossRef]
  14. N. Ogasawara and R. Ito, “Longitudinal mode competition and asymmetric gain saturation in semiconductor injection lasers. I. Experiment,” Jpn. J. Appl. Phys.27(Part 1, No. 4), 607–614 (1988). [CrossRef]
  15. J. Zoz and U. Barabas, “Linewidth enhancement in laser diodes caused by temperature fluctuations,” IEE Proc., Optoelectron.141(3), 191–194 (1994). [CrossRef]
  16. N. Kim, Y. A. Leem, M. Y. Jeon, C. W. Lee, S.-P. Han, D. Lee, and K. H. Park, “Widely tunable 1.55 μm detuned dual mode laser diode for compact continuous-wave THz emitter,” ETRI J.33(5), 810–813 (2011). [CrossRef]
  17. M. Öberg, S. Nilsson, T. Klinga, and P. Ojala, “A three-electrode distributed Bragg reflector laser with 22 nm wavelength tuning range,” IEEE Photon. Technol. Lett.3(4), 299–301 (1991). [CrossRef]
  18. R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5-μm distributed feedback lasers,” J. Lightwave Technol.4(11), 1655–1661 (1986). [CrossRef]
  19. J. Renaudier, G.-H. Duan, J.-G. Provost, H. Debregeas-Sillard, and P. Gallion, “Phase correlation between longitudinal modes in semiconductor self-pulsating DBR lasers,” IEEE Photon. Technol. Lett.17(4), 741–743 (2005). [CrossRef]
  20. A. Uskov, J. Mørk, and J. Mark, “Wave mixing in semiconductor laser amplifiers due to carrier heating and spectral-hole burning,” IEEE J. Quantum Electron.30(8), 1769–1781 (1994). [CrossRef]
  21. T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett.16(16), 630–631 (1980). [CrossRef]
  22. G. Mouret, F. Hindle, A. Cuisset, C. Yang, R. Bocquet, M. Lours, and D. Rovera, “THz photomixing synthesizer based on a fiber frequency comb,” Opt. Express17(24), 22031–22040 (2009). [CrossRef] [PubMed]
  23. S.-P. Han, H. Ko, N. Kim, H.-C. Ryu, C. W. Lee, Y. A. Leem, D. Lee, M. Y. Jeon, S. K. Noh, H. S. Chun, and K. H. Park, “Optical fiber-coupled InGaAs-based terahertz time-domain spectroscopy system,” Opt. Lett.36(16), 3094–3096 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited