OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 16 — Jul. 30, 2012
  • pp: 17509–17521

Embedded metallic focus grating for silicon nitride waveguide with enhanced coupling and directive radiation

Lingyun Wang, Youmin Wang, and Xiaojing Zhang  »View Author Affiliations


Optics Express, Vol. 20, Issue 16, pp. 17509-17521 (2012)
http://dx.doi.org/10.1364/OE.20.017509


View Full Text Article

Acrobat PDF (1841 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We design a compact embedded metallic elliptical focus grating coupler based on gold or silver that efficiently interconnects free space with silicon nitride waveguide at 632.8nm wavelength. The 3D far-field radiation pattern for the proposed grating coupler shows much higher gain and directivity towards free space coupling than that of the etched grating coupler. Specifically the free space transmission efficiency achieves 65% for silver grating coupler. It can also further enhance the fluorescence signal detection for Cy-5 fluorophore by isolating peak diffraction angle for 10°. The dense system integration capability shows the application potential for on-chip interfacing sub-wavelength light processing circuits and near-field fluorescent biosensors with far-field detection of superb radiation directivity and coupling efficiency.

© 2012 OSA

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(130.0130) Integrated optics : Integrated optics

ToC Category:
Integrated Optics

History
Original Manuscript: April 12, 2012
Revised Manuscript: May 24, 2012
Manuscript Accepted: July 9, 2012
Published: July 18, 2012

Citation
Lingyun Wang, Youmin Wang, and Xiaojing Zhang, "Embedded metallic focus grating for silicon nitride waveguide with enhanced coupling and directive radiation," Opt. Express 20, 17509-17521 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-16-17509


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. F. Ay, A. Kocabas, C. Kocabas, A. Aydinli, and S. Agan, “Prism coupling technique investigation of elasto-optical properties of thin polymer films,” J. Appl. Phys.96(12), 7147–7153 (2004). [CrossRef]
  2. W. K. Burns and G. B. Hocker, “End fire coupling between optical fibers and diffused channel waveguides,” Appl. Opt.16(8), 2048–2050 (1977). [CrossRef] [PubMed]
  3. Q. Wang, T.-H. Loh, D. K. T. Ng, and S.-T. Ho, “Design and Analysis of Optical Coupling Between Silicon Nanophotonic Waveguide and Standard Single-Mode Fiber Using an Integrated Asymmetric Super-GRIN Lens,” IEEE J. Sel. Top. Quantum Electron.17(3), 581–589 (2011). [CrossRef]
  4. S. Scheerlinck, J. Schrauwen, F. Van Laere, D. Taillaert, D. Van Thourhout, and R. Baets, “Efficient, broadband and compact metal grating couplers for silicon-on-insulator waveguides,” Opt. Express15(15), 9625–9630 (2007). [CrossRef] [PubMed]
  5. F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and Highly Efficient Grating Couplers Between Optical Fiber and Nanophotonic Waveguides,” J. Lightwave Technol.25(1), 151–156 (2007). [CrossRef]
  6. C. Doerr, L. Chen, Y.-K. Chen, and L. Buhl, “Wide Bandwidth Silicon Nitride Grating Coupler,” IEEE Photon. Technol. Lett.22(19), 1461–1463 (2010). [CrossRef]
  7. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.38(7), 949–955 (2002). [CrossRef]
  8. K. Hoshino, A. Gopal, and X. J. Zhang, “Near-Field Scanning Nanophotonic Microscopy—Breaking the Diffraction Limit Using Integrated Nano Light-Emitting Probe Tip,” IEEE J. Sel. Top. Quantum Electron.15(5), 1393–1399 (2009). [CrossRef]
  9. K. Hoshino, L. J. Rozanski, D. A. Vanden Bout, and X. J. Zhang, “Direct Fabrication of Nanoscale Light Emitting Diode on Silicon Probe Tip for Scanning Microscopy,” J. Microelectromech. Syst.17(1), 4–10 (2008). [CrossRef]
  10. K. Hoshino, L. J. Rozanski, D. A. Vanden Bout, and X. J. Zhang, “Near-field scanning optical microscopy with monolithic silicon light emitting diode on probe tip,” Appl. Phys. Lett.92(13), 131106 (2008). [CrossRef]
  11. Y. Wang, Y.-Y. Huang, and X. J. Zhang, “Plasmonic nanograting tip design for high power throughput near-field scanning aperture probe,” Opt. Express18(13), 14004–14011 (2010). [CrossRef] [PubMed]
  12. Y. Lee, A. Alu, and J. X. Zhang, “Efficient apertureless scanning probes using patterned plasmonic surfaces,” Opt. Express19(27), 25990–25999 (2011). [CrossRef] [PubMed]
  13. L. Wang, K. Hoshino, and X. J. Zhang, “Numerical simulation of photonic crystal based nano-resonators on scanning probe tip for enhanced light confinement,” Proc. SPIE7729, 77291M, 77291M–12 (2010). [CrossRef]
  14. L. Wang, K. Hoshino, and X. J. Zhang, “Light focusing by slot Fabry-Perot photonic crystal nanoresonator on scanning tip,” Opt. Lett.36(10), 1917–1919 (2011). [CrossRef] [PubMed]
  15. E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett.89(20), 203002 (2002). [CrossRef] [PubMed]
  16. L. Martiradonna, F. Pisanello, T. Stomeo, A. Qualtieri, G. Vecchio, S. Sabella, R. Cingolani, M. De Vittorio, and P. P. Pompa, “Spectral tagging by integrated photonic crystal resonators for highly sensitive and parallel detection in biochips,” Appl. Phys. Lett.96(11), 113702 (2010). [CrossRef]
  17. I. D. Block, P. C. Mathias, N. Ganesh, S. I. Jones, B. R. Dorvel, V. Chaudhery, L. O. Vodkin, R. Bashir, and B. T. Cunningham, “A detection instrument for enhanced-fluorescence and label-free imaging on photonic crystal surfaces,” Opt. Express17(15), 13222–13235 (2009). [CrossRef] [PubMed]
  18. A. Pokhriyal, M. Lu, C. S. Huang, S. Schulz, and B. T. Cunningham, “Multicolor fluorescence enhancement from a photonics crystal surface,” Appl. Phys. Lett.97(12), 121108 (2010). [CrossRef] [PubMed]
  19. A. Pokhriyal, M. Lu, V. Chaudhery, C. S. Huang, S. Schulz, and B. T. Cunningham, “Photonic crystal enhanced fluorescence using a quartz substrate to reduce limits of detection,” Opt. Express18(24), 24793–24808 (2010). [CrossRef] [PubMed]
  20. R. Waldhäusl, B. Schnabel, P. Dannberg, E. B. Kley, A. Bräuer, and W. Karthe, “Efficient coupling into polymer waveguides by gratings,” Appl. Opt.36(36), 9383–9390 (1997). [CrossRef] [PubMed]
  21. I. Giuntoni, D. Stolarek, H. Richter, S. Marschmeyer, J. Bauer, A. Gajda, J. Bruns, B. Tillack, K. Petermann, and L. Zimmermann, “Deep-UV Technology for the Fabrication of Bragg Gratings on SOI Rib Waveguides,” IEEE Photon. Technol. Lett.21(24), 1894–1896 (2009). [CrossRef]
  22. T. A. Savas, S. N. Shah, M. L. Schattenburg, J. M. Carter, and H. I. Smith, “Achromatic interferometric lithography for 100-nm-period gratings and grids,” J. Vac. Sci. Technol. B13(6), 2732–2735 (1995). [CrossRef]
  23. P. Bienstman and R. Baets, “Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron.33(4/5), 327–341 (2001). [CrossRef]
  24. J. Yoo, S. Kumar Dhungel, and J. Yi, “Annealing optimization of silicon nitride film for solar cell application,” Thin Solid Films515(19), 7611–7614 (2007). [CrossRef]
  25. CRC Handbook of Chemistry and Physics, 86th ed. (CRC Press, Boca Raton, FL, 2005).
  26. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  27. G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys.90(8), 3825–3830 (2001). [CrossRef]
  28. F. Hao and P. Nordlander, “Efficient dielectric function for FDTD simulation of the optical properties of silver and gold nanoparticles,” Chem. Phys. Lett.446(1-3), 115–118 (2007). [CrossRef]
  29. A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B71(8), 085416 (2005). [CrossRef]
  30. T. W. Lee and S. Gray, “Subwavelength light bending by metal slit structures,” Opt. Express13(24), 9652–9659 (2005). [CrossRef] [PubMed]
  31. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010). [CrossRef]
  32. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed., Artech House Antennas and Propagation Library (Artech House, 2005), pp. xxii, 1006 p.
  33. CST Microwave Studio, 2010.
  34. P. C. Mathias, H. Y. Wu, and B. T. Cunningham, “Employing two distinct photonic crystal resonances to improve fluorescence enhancement,” Appl. Phys. Lett.95(2), 021111 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited