OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 16 — Jul. 30, 2012
  • pp: 17653–17666

Sharper fluorescent super-resolution spot generated by azimuthally polarized beam in STED microscopy

Yi Xue, Cuifang Kuang, Shuai Li, Zhaotai Gu, and Xu Liu  »View Author Affiliations

Optics Express, Vol. 20, Issue 16, pp. 17653-17666 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2381 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel method is proposed for generating sharper fluorescent super-resolution spot by azimuthally polarized beam in stimulated emission depletion (STED) microscopy. The incoherent superposition of azimuthally polarized beam with five-zone binary phase plate and the same beam with quadrant 0/π phase plate can yield a tightly focused doughnut spot surrounded completely and uniformly. And azimuthally polarized beam modulated by a vortex 0—2π phase plate works as pump beam. Compared with known effective excitation spot yielded by circular polarized STED beam, the azimuthally polarized beam result is shaper, as well as energy-saving, costing only ~50% of the energy cost by circular polarized beam. A STED beam of less intensity has the potential to reduce fluorescence photobleaching and photodamage in living cell imaging. In addition, the influence of Ez absence as well as FWHM of pump beam in the focal field is discussed.

© 2012 OSA

OCIS Codes
(050.1380) Diffraction and gratings : Binary optics
(100.6640) Image processing : Superresolution
(180.2520) Microscopy : Fluorescence microscopy
(260.5430) Physical optics : Polarization

ToC Category:

Original Manuscript: April 30, 2012
Revised Manuscript: July 7, 2012
Manuscript Accepted: July 13, 2012
Published: July 19, 2012

Virtual Issues
Vol. 7, Iss. 9 Virtual Journal for Biomedical Optics

Yi Xue, Cuifang Kuang, Shuai Li, Zhaotai Gu, and Xu Liu, "Sharper fluorescent super-resolution spot generated by azimuthally polarized beam in STED microscopy," Opt. Express 20, 17653-17666 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett.19(11), 780–782 (1994). [CrossRef] [PubMed]
  2. T. A. Klar and S. W. Hell, “Subdiffraction resolution in far-field fluorescence microscopy,” Opt. Lett.24(14), 954–956 (1999). [CrossRef] [PubMed]
  3. M. Dyba and S. W. Hell, “Focal spots of size λ/23 open up far-field fluorescence microscopy at 33 nm Axial Resolution,” Phys. Rev. Lett.88(16), 163901 (2002). [CrossRef] [PubMed]
  4. V. Westphal, L. Kastrup, and S. W. Hell, “Lateral resolution of 28 nm (λ/25) in far-field fluorescence microscopy,” Appl. Phys. B77(4), 377–380 (2003). [CrossRef]
  5. V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett.94(14), 143903 (2005). [CrossRef] [PubMed]
  6. G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A.103(31), 11440–11445 (2006). [CrossRef] [PubMed]
  7. E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics3(3), 144–147 (2009). [CrossRef]
  8. B. Harke, C. K. Ullal, J. Keller, and S. W. Hell, “Three-dimensional nanoscopy of colloidal crystals,” Nano Lett.8(5), 1309–1313 (2008). [CrossRef] [PubMed]
  9. S. W. Hell, R. Schmidt, and A. Egner, “Diffraction-unlimited three-dimensional optical nanoscopy with opposing lenses,” Nat. Photonics3(7), 381–387 (2009). [CrossRef]
  10. T. J. Gould, J. R. Myers, and J. Bewersdorf, “Total internal reflection STED microscopy,” Opt. Express19(14), 13351–13357 (2011). [CrossRef] [PubMed]
  11. M. Leutenegger, C. Ringemann, T. Lasser, S. W. Hell, and C. Eggeling, “Fluorescence correlation spectroscopy with a total internal reflection fluorescence STED microscope (TIRF-STED-FCS),” Opt. Express20(5), 5243–5263 (2012). [CrossRef] [PubMed]
  12. Y. Xue, C. Kuang, X. Hao, Z. Gu, and X. Liu, “A method for generating a three-dimensional dark spot using a radially polarized beam,” J. Opt.13(12), 125704 (2011). [CrossRef]
  13. N. Bokor and N. Davidson, “A three dimensional dark focal spot uniformly surrounded by light,” Opt. Commun.279(2), 229–234 (2007). [CrossRef]
  14. N. Bokor, Y. Iketaki, T. Watanabe, and M. Fujii, “Investigation of polarization effects for high-numerical-aperture first-order Laguerre-Gaussian beams by 2D scanning with a single fluorescent microbead,” Opt. Express13(26), 10440–10447 (2005). [CrossRef] [PubMed]
  15. L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science292(5518), 912–914 (2001). [CrossRef] [PubMed]
  16. C. Kuang, X. Hao, X. Liu, T. Wang, and Y. Ku, “Formation of sub-half-wavelength focal spot with ultra long depth of focus,” Opt. Commun.284(7), 1766–1769 (2011). [CrossRef]
  17. X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt.12(11), 115707 (2010). [CrossRef]
  18. H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics2(8), 501–505 (2008). [CrossRef]
  19. B. R. Boruah, “Programmable Diffractive Optics for Laser Scanning Confocal Microscopy,” in Imperial College London (Imperial College London, 2007).
  20. V. Westphal, C. M. Blanca, M. Dyba, L. Kastrup, and S. W. Hell, “Laser-diode-stimulated emission depletion microscopy,” Appl. Phys. Lett.82(18), 3125–3127 (2003). [CrossRef]
  21. D. Wildanger, R. Medda, L. Kastrup, and S. W. Hell, “A compact STED microscope providing 3D nanoscale resolution,” J. Microsc.236(1), 35–43 (2009). [CrossRef] [PubMed]
  22. X. Hao, C. Kuang, T. Wang, and X. Liu, “Phase encoding for sharper focus of the azimuthally polarized beam,” Opt. Lett.35(23), 3928–3930 (2010). [CrossRef] [PubMed]
  23. M. Dyba, J. Keller, and S. W. Hell, “Phase filter enhanced STED-4Pi fluorescence microscopy: theory and experiment,” New J. Phys.7, 134 (2005). [CrossRef]
  24. B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schönle, and S. W. Hell, “Resolution scaling in STED microscopy,” Opt. Express16(6), 4154–4162 (2008). [CrossRef] [PubMed]
  25. Y. Iketaki, T. Watanabe, M. Sakai, S.-i. Ishiuchi, M. Fujii, and T. Watanabe, “Theoretical investigation of the point-spread function given by super-resolving fluorescence microscopy using two-color fluorescence dip spectroscopy,” Opt. Eng.44(3), 033602–033609 (2005). [CrossRef]
  26. N. Bokor, Y. Iketaki, T. Watanabe, K. Daigoku, N. Davidson, and M. Fujii, “On polarization effects in fluorescence depletion microscopy,” Opt. Commun.272(1), 263–268 (2007). [CrossRef]
  27. S. Galiani, B. Harke, G. Vicidomini, G. Lignani, F. Benfenati, A. Diaspro, and P. Bianchini, “Strategies to maximize the performance of a STED microscope,” Opt. Express20(7), 7362–7374 (2012). [CrossRef] [PubMed]
  28. V. Westphal, J. Seeger, T. Salditt, and S. W. Hell, “Stimulated emission depletion microscopy on lithographic nanostructures,” J. Phys. At. Mol. Opt. Phys.38(9), S695–S705 (2005). [CrossRef]
  29. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett.91(23), 233901 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited