OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 16 — Jul. 30, 2012
  • pp: 17734–17740

Highly efficient nanofocusing based on a T-shape micro-slit surrounded with multi-slits

Jianjun Chen, Chen Wang, Guowei Lu, Wenqiang Li, Jinghua Xiao, and Qihuang Gong  »View Author Affiliations

Optics Express, Vol. 20, Issue 16, pp. 17734-17740 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1975 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Highly efficient plasmonic nanofocusing is proposed and demonstrated in a T-shape micro-slit surrounded by multi-slits. The nanofocusing phenomenon is achieved based on the multimode interference in the micro-slit, the constructive interference in the T-shape slit, and also the multiple-beam interference of the light radiated from the multi-slits and the transmitted light from the T-shape micro-slit. Because of the large illumination areas of the incident light on the wide slit aperture in the proposed structure, a large amount of light can pass through the wide slit. This leads to a highly efficient nanofocusing. Meanwhile, the wide slit means easy fabrication. In the experiment, the focusing phenomenon in the proposed structure was successfully demonstrated with a scanning near-field optical microscopy (SNOM) technology.

© 2012 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.3160) Physical optics : Interference
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

Original Manuscript: May 25, 2012
Revised Manuscript: July 7, 2012
Manuscript Accepted: July 9, 2012
Published: July 19, 2012

Jianjun Chen, Chen Wang, Guowei Lu, Wenqiang Li, Jinghua Xiao, and Qihuang Gong, "Highly efficient nanofocusing based on a T-shape micro-slit surrounded with multi-slits," Opt. Express 20, 17734-17740 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Rather, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Tracts in Modern Physics (Springer, 1988).
  2. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmon enhance optical transmission through subwavelength holes,” Phys. Rev. B58(11), 6779–6782 (1998). [CrossRef]
  3. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett.86(6), 1114–1117 (2001). [CrossRef] [PubMed]
  4. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002). [CrossRef] [PubMed]
  5. B. Lee, S. Kim, H. Kim, and Y. J. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron.34(2), 47–87 (2010). [CrossRef]
  6. F. H. Hao, R. Wang, and J. Wang, “A novel design method of focusing-control device by modulating SPPs scattering,” Plasmonics5(1), 45–49 (2010). [CrossRef]
  7. B. H. Jia, H. F. Shi, J. F. Li, Y. Q. Fu, C. L. Du, and M. Gu, “Near-field visualization of focal depth modulation by step corrugated plasmonic slits,” Appl. Phys. Lett.94(15), 151912 (2009). [CrossRef]
  8. H. Shi, C. Du, and X. Luo, “Focal length modulation based on a metallic slit surrounded with grooves in curved depths,” Appl. Phys. Lett.91(9), 093111 (2007). [CrossRef]
  9. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett.90(16), 167401 (2003). [CrossRef] [PubMed]
  10. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998). [CrossRef]
  11. F. H. Hao, R. Wang, and J. Wang, “Design and characterization of a micron-focusing plasmonic device,” Opt. Express18(15), 15741–15746 (2010). [CrossRef] [PubMed]
  12. J. Wang and W. Zhou, “Experimental Investigation of Focusing of gold planar plasmonic lenses,” Plasmonics5(4), 325–329 (2010). [CrossRef]
  13. H. F. Shi and L. J. Guo, “Design of plasmonic near field plate at optical frequency,” Appl. Phys. Lett.96(14), 141107 (2010). [CrossRef]
  14. S. Kim and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett.90, 0511131 (2007).
  15. S. Kim, Y. Lim, H. Kim, J. Park, and B. Lee, “Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings,” Appl. Phys. Lett.92, 0131031 (2008).
  16. Z. J. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett.85(4), 642–644 (2004). [CrossRef]
  17. H. F. Shi, C. T. Wang, C. L. Du, X. G. Luo, X. C. Dong, and H. T. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express13(18), 6815–6820 (2005). [CrossRef] [PubMed]
  18. W. Zhang, C. Zhao, J. Wang, and J. Zhang, “An experimental study of the plasmonic Talbot effect,” Opt. Express17(22), 19757–19762 (2009). [CrossRef] [PubMed]
  19. S. Cherukulappurath, D. Heinis, J. Cesario, N. F. van Hulst, S. Enoch, and R. Quidant, “Local observation of plasmon focusingin Talbot carpets,” Opt. Express17(26), 23772–23784 (2009). [CrossRef] [PubMed]
  20. L. L. Li, Y. Q. Fu, H. S. Wu, L. G. Zheng, H. X. Zhang, Z. W. Lu, Q. Sun, and W. X. Yu, “The Talbot effect of plasmonic nanolenses,” Opt. Express19(20), 19365–19373 (2011). [CrossRef] [PubMed]
  21. H. F. Wang, F. H. Groen, S. F. Pereira, and J. J. M. Braat, “Optical waveguide focusing system with short free-working distance,” Appl. Phys. Lett.83(22), 4486 (2003). [CrossRef]
  22. R. Gordon, “Light in a subwavelength slit in a metal: propagation and reflection,” Phys. Rev. B73(15), 153405 (2006). [CrossRef]
  23. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  24. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol.13(4), 615–627 (1995). [CrossRef]
  25. J. J. Chen, Z. Li, S. Yue, and Q. H. Gong, “Efficient unidirectional generation of surface plasmon polaritons with asymmetric single-nanoslit,” Appl. Phys. Lett.97(4), 041113 (2010). [CrossRef]
  26. J. J. Chen, Z. Li, S. Yue, and Q. H. Gong, “Highly efficient all-optical control of surface-plasmon-polariton generation based on a compact asymmetric single slit,” Nano Lett.11(7), 2933–2937 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited