OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 16 — Jul. 30, 2012
  • pp: 17797–17805

Spectrum-, pulsewidth-, and wavelength-switchable all-fiber mode-locked Yb laser with fiber based birefringent filter

Y. S. Fedotov, S. M. Kobtsev, R. N. Arif, A. G. Rozhin, C. Mou, and S. K. Turitsyn  »View Author Affiliations


Optics Express, Vol. 20, Issue 16, pp. 17797-17805 (2012)
http://dx.doi.org/10.1364/OE.20.017797


View Full Text Article

Enhanced HTML    Acrobat PDF (1875 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We examined methods of controlling the pulse duration, spectral width and wavelength of the output from an all-fiber Yb laser mode-locked by carbon nanotubes. It is shown that a segment of polarization maintaining (PM) fiber inserted into a standard single mode fiber based laser cavity can function as a spectral selective filter. Adjustment of the length of the PM fiber from 1 to 2 m led to a corresponding variation in the pulse duration from 2 to 3.8 ps, the spectral bandwidth of the laser output changes from 0.15 to 1.26 nm. Laser output wavelength detuning within up to 5 nm was demonstrated with a fixed length of the PM fiber by adjustment of the polarization controller.

© 2012 OSA

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(140.4050) Lasers and laser optics : Mode-locked lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: May 1, 2012
Revised Manuscript: July 7, 2012
Manuscript Accepted: July 18, 2012
Published: July 20, 2012

Citation
Y. S. Fedotov, S. M. Kobtsev, R. N. Arif, A. G. Rozhin, C. Mou, and S. K. Turitsyn, "Spectrum-, pulsewidth-, and wavelength-switchable all-fiber mode-locked Yb laser with fiber based birefringent filter," Opt. Express 20, 17797-17805 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-16-17797


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Avouris, M. Freitag, and V. Perebeinos, “Carbon-nanotube photonics and optoelectronics,” Nat. Photonics2(6), 341–350 (2008), http://www.nature.com/nphoton/journal/v2/n6/full/nphoton.2008.94.html . [CrossRef]
  2. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quant. Electron.2(3), 435–453 (1996).
  3. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser mode locking using a saturable absorber incorporating carbon nanotubes,” J. Lightwave Technol.22(1), 51–56 (2004). [CrossRef]
  4. T. Schibli, K. Minoshima, H. Kataura, E. Itoga, N. Minami, S. Kazaoui, K. Miyashita, M. Tokumoto, and Y. Sakakibara, “Ultrashort pulse-generation by saturable absorber mirrors based on polymer-embedded carbon nanotubes,” Opt. Express13(20), 8025–8031 (2005). [CrossRef] [PubMed]
  5. J. W. Nicholson, R. S. Windeler, and D. J. Digiovanni, “Optically driven deposition of single-walled carbon-nanotube saturable absorbers on optical fiber end-faces,” Opt. Express15(15), 9176–9183 (2007). [CrossRef] [PubMed]
  6. A. Martinez, S. Uchida, Y. W. Song, T. Ishigure, and S. Yamashita, “Fabrication of Carbon nanotube poly-methyl-methacrylate composites for nonlinear photonic devices,” Opt. Express16(15), 11337–11343 (2008). [CrossRef] [PubMed]
  7. W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, U. Griebner, V. Petrov, and F. Rotermund, “Mode-locked self-starting Cr:forsterite laser using a single-walled carbon nanotube saturable absorber,” Opt. Lett.33(21), 2449–2451 (2008). [CrossRef] [PubMed]
  8. M. A. Solodyankin, E. D. Obraztsova, A. S. Lobach, A. I. Chernov, A. V. Tausenev, V. I. Konov, and E. M. Dianov, “Mode-locked 1.93 microm thulium fiber laser with a carbon nanotube absorber,” Opt. Lett.33(12), 1336–1338 (2008). [CrossRef] [PubMed]
  9. A. Gambetta, G. Galzerano, A. G. Rozhin, A. C. Ferrari, R. Ramponi, P. Laporta, and M. Marangoni, “Sub-100 fs pump-probe spectroscopy of Single Wall Carbon Nanotubes with a 100 MHz Er-fiber laser system,” Opt. Express16(16), 11727–11734 (2008). [CrossRef] [PubMed]
  10. N. Nishizawa, Y. Seno, K. Sumimura, Y. Sakakibara, E. Itoga, H. Kataura, and K. Itoh, “All-polarization-maintaining Er-doped ultrashort-pulse fiber laser using carbon nanotube saturable absorber,” Opt. Express16(13), 9429–9435 (2008). [CrossRef] [PubMed]
  11. S. Kivistö, T. Hakulinen, A. Kaskela, B. Aitchison, D. P. Brown, A. G. Nasibulin, E. I. Kauppinen, A. Härkönen, and O. G. Okhotnikov, “Carbon nanotube films for ultrafast broadband technology,” Opt. Express17(4), 2358–2363 (2009). [CrossRef] [PubMed]
  12. A. Schmidt, S. Rivier, W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, F. Rotermund, D. Rytz, G. Steinmeyer, V. Petrov, and U. Griebner, “Sub-100 fs single-walled carbon nanotube saturable absorber mode-locked Yb-laser operation near 1 μm,” Opt. Express17(22), 20109–20116 (2009). [CrossRef] [PubMed]
  13. E. J. R. Kelleher, J. C. Travers, E. P. Ippen, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Generation and direct measurement of giant chirp in a passively mode-locked laser,” Opt. Lett.34(22), 3526–3528 (2009). [CrossRef] [PubMed]
  14. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube–polymer composites for ultrafast photonics,” Adv. Mater. (Deerfield Beach Fla.)21(38–39), 3874–3899 (2009). [CrossRef]
  15. D. V. Khudyakov, A. S. Lobach, and V. A. Nadtochenko, “Passive mode locking in a Ti:sapphire laser using a single-walled carbon nanotube saturable absorber at a wavelength of 810 nm,” Opt. Lett.35(16), 2675–2677 (2010). [CrossRef] [PubMed]
  16. S. M. Kobtsev, S. V. Kukarin, and Y. S. Fedotov, “Mode-locked Yb fiber laser with saturable absorber based on carbon nanotubes,” Laser Phys.21(2), 283–286 (2011). [CrossRef]
  17. C. E. S. Castellani, E. J. R. Kelleher, J. C. Travers, D. Popa, T. Hasan, Z. Sun, E. Flahaut, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Ultrafast Raman laser mode-locked by nanotubes,” Opt. Lett.36(20), 3996–3998 (2011). [CrossRef] [PubMed]
  18. F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol.3(12), 738–742 (2008). [CrossRef] [PubMed]
  19. J. C. Chiu, Y. F. Lan, C. M. Chang, X. Z. Chen, C. Y. Yeh, C. K. Lee, G. R. Lin, J. J. Lin, and W. H. Cheng, “Concentration effect of carbon nanotube based saturable absorber on stabilizing and shortening mode-locked pulse,” Opt. Express18(4), 3592–3600 (2010). [CrossRef] [PubMed]
  20. J. C. Chiu, C. M. Chang, B. Z. Hsieh, S. C. Lin, C. Y. Yeh, G. R. Lin, C. K. Lee, J. J. Lin, and W. H. Cheng, “Pulse shortening mode-locked fiber laser by thickness and concentration product of carbon nanotube based saturable absorber,” Opt. Express19(5), 4036–4041 (2011). [CrossRef] [PubMed]
  21. K. Özgören and F. Ö. Ilday, “All-fiber all-normal dispersion laser with a fiber-based Lyot filter,” Opt. Lett.35(8), 1296–1298 (2010). [CrossRef] [PubMed]
  22. H. Lim, F. Ilday, and F. Wise, “Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion control,” Opt. Express10(25), 1497–1502 (2002). [PubMed]
  23. M. Schultz, O. Prochnow, A. Ruehl, D. Wandt, D. Kracht, S. Ramachandran, and S. Ghalmi, “Sub-60-fs ytterbium-doped fiber laser with a fiber-based dispersion compensation,” Opt. Lett.32(16), 2372–2374 (2007). [CrossRef] [PubMed]
  24. M. Rusu, R. Herda, S. Kivistö, and O. G. Okhotnikov, “Fiber taper for dispersion management in a mode-locked ytterbium fiber laser,” Opt. Lett.31(15), 2257–2259 (2006). [CrossRef] [PubMed]
  25. A. Isomäki and O. G. Okhotnikov, “All-fiber ytterbium soliton mode-locked laser with dispersion control by solid-core photonic bandgap fiber,” Opt. Express14(10), 4368–4373 (2006). [CrossRef] [PubMed]
  26. S. Kivistö, R. Herda, and O. G. Okhotnikov, “All-fiber supercontinuum source based on a mode-locked ytterbium laser with dispersion compensation by linearly chirped Bragg grating,” Opt. Express16(1), 265–270 (2008). [CrossRef] [PubMed]
  27. R. Gumenyuk, I. Vartiainen, H. Tuovinen, S. Kivistö, Y. Chamorovskiy, and O. G. Okhotnikov, “Dispersion compensation technologies for femtosecond fiber system,” Appl. Opt.50(6), 797–801 (2011). [CrossRef] [PubMed]
  28. A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B25(2), 140–148 (2008). [CrossRef]
  29. B. G. Bale, J. N. Kutz, A. Chong, W. H. Renninger, and F. W. Wise, “Spectral filtering for high-energy mode-locking in normal dispersion fiber lasers,” J. Opt. Soc. Am. B25(10), 1763–1770 (2008). [CrossRef]
  30. B. Nie, D. Pestov, F. W. Wise, and M. Dantus, “Generation of 42-fs and 10-nJ pulses from a fiber laser with self-similar evolution in the gain segment,” Opt. Express19(13), 12074–12080 (2011). [CrossRef] [PubMed]
  31. B. Lyot, “Optical apparatus with wide field using interference of polarized light,” C. R. Acad. Sci. (Paris)197, 1593 (1933).
  32. S. M. Kobtsev and N. A. Sventsitskay, “Application of birefringent filters in continuous-wave tunable lasers: a review,” Opt. Spectrosc.73(1), 114–123 (1992).
  33. S. Webb, S. Desbruslais, R. Oberland, and J. Ellison, “Optical filter,” U. S. patent 2009/0028555 A1 (27 July 2007).
  34. D. E. Resasco, W. E. Alvarez, F. Pompeo, L. Balzano, J. E. Herrera, B. Kitiyanan, and A. Borgna, “A scalable process for production of single-walled carbon nanotubes (SWNTs) by catalytic disproportionation of CO on a solid catalyst,” J. Nanopart. Res.4(1/2), 131–136 (2002), http://www.springerlink.com/content/t642w241ll741366/ . [CrossRef]
  35. A. B. Grudinin, D. N. Payne, P. W. Turner, L. J. A. Nilsson, M. N. Zervas, M. Ibsen, and M. K. Durkin, “Multi-fiber arrangements for high power fiber lasers and amplifiers,” U. S. patent 6,826,335 (30 November 2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited