OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 16 — Jul. 30, 2012
  • pp: 17843–17855

LCoS nematic SLM characterization and modeling for diffraction efficiency optimization, zero and ghost orders suppression

Emiliano Ronzitti, Marc Guillon, Vincent de Sars, and Valentina Emiliani  »View Author Affiliations

Optics Express, Vol. 20, Issue 16, pp. 17843-17855 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2064 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Pixilated spatial light modulators are efficient devices to shape the wavefront of a laser beam or to perform Fourier optical filtering. When conjugated with the back focal plane of a microscope objective, they allow an efficient redistribution of laser light energy. These intensity patterns are usually polluted by undesired spots so-called ghosts and zero-orders whose intensities depend on displayed patterns. In this work, we propose a model to account for these discrepancies and demonstrate the possibility to efficiently reduce the intensity of the zero-order up to 95%, the intensity of the ghost up to 96% and increase diffraction efficiency up to 44%. Our model suggests physical cross-talk between pixels and thus, filtering of addressed high spatial frequencies. The method implementation relies on simple preliminary characterization of the SLM and can be computed a priori with any phase profile. The performance of this method is demonstrated employing a Hamamatsu LCoS SLM X10468-02 with two-photon excitation of fluorescent Rhodamine layers.

© 2012 OSA

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(090.1760) Holography : Computer holography
(230.3720) Optical devices : Liquid-crystal devices
(230.6120) Optical devices : Spatial light modulators

ToC Category:
Optical Devices

Original Manuscript: May 24, 2012
Revised Manuscript: June 29, 2012
Manuscript Accepted: June 29, 2012
Published: July 20, 2012

Emiliano Ronzitti, Marc Guillon, Vincent de Sars, and Valentina Emiliani, "LCoS nematic SLM characterization and modeling for diffraction efficiency optimization, zero and ghost orders suppression," Opt. Express 20, 17843-17855 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev.5(1), 81–101 (2011). [CrossRef]
  2. K. D. Wulff, D. G. Cole, R. L. Clark, R. Dileonardo, J. Leach, J. Cooper, G. Gibson, and M. J. Padgett, “Aberration correction in holographic optical tweezers,” Opt. Express14(9), 4169–4174 (2006). [CrossRef] [PubMed]
  3. K. Dholakia and T. Cizmar, “Shaping the future of manipulation,” Nat. Photonics5(6), 335–342 (2011). [CrossRef]
  4. L. Golan, I. Reutsky, N. Farah, and S. Shoham, “Design and characteristics of holographic neural photo-stimulation systems,” J. Neural Eng.6(6), 066004 (2009). [CrossRef] [PubMed]
  5. C. Lutz, T. S. Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters,” Nat. Methods5(9), 821–827 (2008). [CrossRef] [PubMed]
  6. V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation using spatial light modulators,” Front. Neural Circuits2, 1–14 (2008). [CrossRef] [PubMed]
  7. E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods7(10), 848–854 (2010). [CrossRef] [PubMed]
  8. S. G. Yang, E. Papagiakoumou, M. Guillon, V. de Sars, C. M. Tang, and V. Emiliani, “Three-dimensional holographic photostimulation of the dendritic arbor,” J. Neural Eng.8(4), 046002 (2011). [CrossRef] [PubMed]
  9. R. Di Leonardo, F. Ianni, and G. Ruocco, “Computer generation of optimal holograms for optical trap arrays,” Opt. Express15(4), 1913–1922 (2007). [CrossRef] [PubMed]
  10. F. Wyrowski and O. Bryngdahl, “Iterative Fourier-transform algorithm applied to computer holography,” J. Opt. Soc. Am. A5(7), 1058–1065 (1988). [CrossRef]
  11. V. Arrizon, E. Carreon, and M. Testorf, “Implementation of Fourier array illuminators using pixelated SLM: efficiency limitations,” Opt. Commun.160(4-6), 207–213 (1999). [CrossRef]
  12. I. Moreno, A. Lizana, A. Márquez, C. Iemmi, E. Fernández, J. Campos, and M. J. Yzuel, “Time fluctuations of the phase modulation in a liquid crystal on silicon display: characterization and effects in diffractive optics,” Opt. Express16(21), 16711–16722 (2008). [CrossRef] [PubMed]
  13. L. Lobato, A. Lizana, A. Marquez, I. Moreno, C. Iemmi, J. Campos, and M. J. Yzuel, “Characterization of the anamorphic and spatial frequency dependent phenomenon in Liquid Crystal on Silicon displays,” J. Eur. Opt. Soc. Rapid Publ.6, 11012S (2011).
  14. A. Márquez, C. Iemmi, I. Moreno, J. Campos, and M. J. Yzuel, “Anamorphic and spatial frequency dependent phase modulation on liquid crystal displays. Optimization of the modulation diffraction efficiency,” Opt. Express13(6), 2111–2119 (2005). [CrossRef] [PubMed]
  15. B. Apter, U. Efron, and E. Bahat-Treidel, “On the fringing-field effect in liquid-crystal beam-steering devices,” Appl. Opt.43(1), 11–19 (2004). [CrossRef] [PubMed]
  16. E. Bahat-Treidel, B. Apter, and U. Efron, “Experimental study of phase-step broadening by fringing fields in a three-electrode liquid-crystal cell,” Appl. Opt.44(15), 2989–2995 (2005). [CrossRef] [PubMed]
  17. U. Efron, B. Apter, and E. Bahat-Treidel, “Fringing-field effect in liquid-crystal beam-steering devices: an approximate analytical model,” J. Opt. Soc. Am. A21(10), 1996–2008 (2004). [CrossRef] [PubMed]
  18. M. Polin, K. Ladavac, S. H. Lee, Y. Roichman, and D. G. Grier, “Optimized holographic optical traps,” Opt. Express13(15), 5831–5845 (2005). [CrossRef] [PubMed]
  19. S. Zwick, T. Haist, M. Warber, and W. Osten, “Dynamic holography using pixelated light modulators,” Appl. Opt.49(25), F47–F58 (2010). [CrossRef] [PubMed]
  20. H. Zhang, J. H. Xie, J. Liu, and Y. T. Wang, “Elimination of a zero-order beam induced by a pixelated spatial light modulator for holographic projection,” Appl. Opt.48(30), 5834–5841 (2009). [CrossRef] [PubMed]
  21. A. Jesacher and M. J. Booth, “Parallel direct laser writing in three dimensions with spatially dependent aberration correction,” Opt. Express18(20), 21090–21099 (2010). [CrossRef] [PubMed]
  22. D. Palima and V. R. Daria, “Holographic projection of arbitrary light patterns with a suppressed zero-order beam,” Appl. Opt.46(20), 4197–4201 (2007). [CrossRef] [PubMed]
  23. E. Papagiakoumou, V. de Sars, D. Oron, and V. Emiliani, “Patterned two-photon illumination by spatiotemporal shaping of ultrashort pulses,” Opt. Express16(26), 22039–22047 (2008). [CrossRef] [PubMed]
  24. S. A. Benton and V. M. Bove, in Holographic Imaging (Wiley Interscience, 2008), p. 59.
  25. J. W. Goodman, in Introduction to Fourier Optics, R. A. Cie, ed. (Englewood, Colorado, 2005), p. 84.
  26. I. Moreno, C. Iemmi, A. Márquez, J. Campos, and M. J. Yzuel, “Modulation light efficiency of diffractive lenses displayed in a restricted phase-mostly modulation display,” Appl. Opt.43(34), 6278–6284 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited