OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 16 — Jul. 30, 2012
  • pp: 17894–17903

Femtosecond laser writing of a flat-top interleaver via cascaded Mach-Zehnder interferometers

Jason C. Ng, Chengbo Li, Peter R. Herman, and Li Qian  »View Author Affiliations

Optics Express, Vol. 20, Issue 16, pp. 17894-17903 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1150 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A flat-top interleaver consisting of cascaded Mach-Zehnder interferometers (MZIs) was fabricated in bulk glass by femtosecond laser direct writing. Spectral contrast ratios of greater than 15 dB were demonstrated over a 30 nm bandwidth for 3 nm channel spacing. The observed spectral response agreed well with a standard transfer matrix model generated from responses of individual optical components, demonstrating the possibility for multi-component optical design as well as sufficient process accuracy and fabrication consistency for femtosecond laser writing of advanced optical circuits in three dimensions.

© 2012 OSA

OCIS Codes
(320.2250) Ultrafast optics : Femtosecond phenomena
(350.2460) Other areas of optics : Filters, interference

ToC Category:
Laser Microfabrication

Original Manuscript: June 5, 2012
Revised Manuscript: July 13, 2012
Manuscript Accepted: July 13, 2012
Published: July 20, 2012

Jason C. Ng, Chengbo Li, Peter R. Herman, and Li Qian, "Femtosecond laser writing of a flat-top interleaver via cascaded Mach-Zehnder interferometers," Opt. Express 20, 17894-17903 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt.11(1), 013001 (2009). [CrossRef]
  2. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008). [CrossRef]
  3. S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process.77(1), 109–111 (2003). [CrossRef]
  4. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996). [CrossRef] [PubMed]
  5. C. Florea and K. A. Winick, “Fabrication and characterization of photonic devices directly written in glass using femtosecond laser pulses,” J. Lightwave Technol.21(1), 246–253 (2003). [CrossRef]
  6. D. Homoelle, S. Wielandy, A. L. Gaeta, N. F. Borrelli, and C. Smith, “Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses,” Opt. Lett.24(18), 1311–1313 (1999). [CrossRef] [PubMed]
  7. A. M. Streltsov and N. F. Borrelli, “Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses,” Opt. Lett.26(1), 42–43 (2001). [CrossRef] [PubMed]
  8. L. A. Fernandes, J. R. Grenier, P. R. Herman, J. S. Aitchison, and P. V. S. Marques, “Femtosecond laser fabrication of birefringent directional couplers as polarization beam splitters in fused silica,” Opt. Express19(13), 11992–11999 (2011). [CrossRef] [PubMed]
  9. H. Zhang, S. M. Eaton, J. Li, and P. R. Herman, “Type II femtosecond laser writing of Bragg grating waveguides in bulk glass,” Electron. Lett.42(21), 1223–1224 (2006). [CrossRef]
  10. R. Keil, M. Heinrich, F. Dreisow, T. Pertsch, A. Tünnermann, S. Nolte, D. N. Christodoulides, and A. Szameit, “All-optical routing and switching for three-dimensional photonic circuitry,” Sci Rep1, 94 (2011). [CrossRef] [PubMed]
  11. Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, “Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses,” Electron. Lett.36(3), 226–227 (2000). [CrossRef]
  12. S. Taccheo, G. Della Valle, R. Osellame, G. Cerullo, N. Chiodo, P. Laporta, O. Svelto, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “Er:Yb-doped waveguide laser fabricated by femtosecond laser pulses,” Opt. Lett.29(22), 2626–2628 (2004). [CrossRef] [PubMed]
  13. K. Minoshima, A. Kowalevicz, E. Ippen, and J. Fujimoto, “Fabrication of coupled mode photonic devices in glass by nonlinear femtosecond laser materials processing,” Opt. Express10(15), 645–652 (2002). [PubMed]
  14. G. Li, K. A. Winick, A. A. Said, M. Dugan, and P. Bado, “Waveguide electro-optic modulator in fused silica fabricated by femtosecond laser direct writing and thermal poling,” Opt. Lett.31(6), 739–741 (2006). [CrossRef] [PubMed]
  15. G. D. Marshall, A. Politi, J. C. F. Matthews, P. Dekker, M. Ams, M. J. Withford, and J. L. O’Brien, “Laser written waveguide photonic quantum circuits,” Opt. Express17(15), 12546–12554 (2009). [CrossRef] [PubMed]
  16. M. Oguma, T. Kitoh, Y. Inoue, T. Mizuno, T. Shibata, M. Kohtoku, and Y. Hibino, “Compact and low-loss interleave filter employing lattice-form structure and silica-based waveguide,” J. Lightwave Technol.22(3), 895–902 (2004). [CrossRef]
  17. S. M. Eaton, Contrasts in Thermal Diffusion and Heat Accumulation Effects in the Fabrication of Waveguides in Glasses using Variable Repetition Rate Femtosecond Laser (University of Toronto, 2008).
  18. P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “‘Quill’ writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007). [CrossRef]
  19. F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, and K. O. Hill, “An all-fiber dense wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings,” IEEE Photon. Technol. Lett.7(4), 388–390 (1995). [CrossRef]
  20. Y. Zhang, W. Huang, X. Wang, H. Xu, and Z. Cai, “Design of flat-top interleaver and tunable dispersion compensator using cascaded Sagnac loop mirrors and ring resonators,” Appl. Opt.48(32), 6213–6222 (2009). [CrossRef] [PubMed]
  21. L. Wei and J. W. Y. Lit, “Design optimization of flattop interleaver and its dispersion compensation,” Opt. Express15(10), 6439–6457 (2007). [CrossRef] [PubMed]
  22. Q. J. Wang, Y. Zhang, and Y. C. Soh, “Design of 100/300 GHz optical interleaver with IIR architectures,” Opt. Express13(7), 2643–2652 (2005). [CrossRef] [PubMed]
  23. J. Ng, C. Li, P. Herman, and L. Qian, “Flap-Top Interleaver by Femtosecond Laser Writing of Cascaded Mach-Zehnder Interferometers in Fused Silica,” in Quantum Electronics and Laser Science Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JTuI71.
  24. W. J. Chen, S. M. Eaton, H. Zhang, and P. R. Herman, “Broadband directional couplers fabricated in bulk glass with high repetition rate femtosecond laser pulses,” Opt. Express16(15), 11470–11480 (2008). [CrossRef] [PubMed]
  25. S. M. Eaton, W.-J. Chen, H. Zhang, R. Iyer, J. Li, M. L. Ng, S. Ho, J. S. Aitchison, and P. R. Herman, “Spectral loss characterization of femtosecond laser written waveguides in glass with application to demultiplexing of 1300 and 1550 nm wavelengths,” J. Lightwave Technol.27(9), 1079–1085 (2009). [CrossRef]
  26. H. Zhang, S. Ho, S. M. Eaton, J. Li, and P. R. Herman, “Three-dimensional optical sensing network written in fused silica glass with femtosecond laser,” Opt. Express16(18), 14015–14023 (2008). [CrossRef] [PubMed]
  27. Q. Wang and S. He, “Optimal design of a flat-top interleaver based on cascaded MZ interferometers by using a genetic algorithm,” Opt. Commun.224(4-6), 229–236 (2003). [CrossRef]
  28. L. Faustini and G. Martini, “Bend loss in single-mode fibers,” J. Lightwave Technol.15(4), 671–679 (1997). [CrossRef]
  29. D. Marcuse, “Curvature loss formula for optical fibers,” J. Opt. Soc. Am.66(3), 216–220 (1976). [CrossRef]
  30. S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused high-repetition rate femtosecond laser,” J. Non-Cryst. Solids357(11-13), 2387–2391 (2011). [CrossRef]
  31. F. Landouceur and J. D. Love, Silica-Based Buried Channel Waveguides and Devices (Chapman & Hall, 1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited