OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 16 — Jul. 30, 2012
  • pp: 18005–18015

Force-induced optical nonlinearity and Kerr-like coefficient in opto-mechanical ring resonators

Y. F. Yu, M. Ren, J. B. Zhang, T. Bourouina, C. S. Tan, J. M. Tsai, and A. Q. Liu  »View Author Affiliations

Optics Express, Vol. 20, Issue 16, pp. 18005-18015 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2694 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper demonstrates the optical nonlinearity in opto-mechanical ring resonators that consist of a bus waveguide and two ring resonators, which is induced by the optical gradient force and characterized by the Kerr-like coefficient. Each ring resonator has a free-hanging arc that is perpendicularly deformable by an optical gradient force and subsequently this deformation changes the effective refractive index (ERI) of the ring resonator. The change of the ERI induces optical nonlinearity into the system, which is described by an equivalent Kerr coefficient (Kerr-like coefficient). Based on the experimental results, the Kerr-like coefficient of the ring resonator system falls in the range from 7.64 × 10−12 to 2.01 × 10−10 m2W−1, which is at least 6-order higher than the silicon’s Kerr coefficient. The dramatically improved optical nonlinearity in the opto-mechanical ring resonators promises potential applications in low power optical signal processing, modulation and bio-sensing.

© 2012 OSA

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(190.0190) Nonlinear optics : Nonlinear optics

ToC Category:
Integrated Optics

Original Manuscript: April 17, 2012
Revised Manuscript: May 14, 2012
Manuscript Accepted: May 24, 2012
Published: July 23, 2012

Y. F. Yu, M. Ren, J. B. Zhang, T. Bourouina, C. S. Tan, J. M. Tsai, and A. Q. Liu, "Force-induced optical nonlinearity and Kerr-like coefficient in opto-mechanical ring resonators," Opt. Express 20, 18005-18015 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics3(4), 216–219 (2009). [CrossRef]
  2. Y. H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, “Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides,” Opt. Express14(24), 11721–11726 (2006). [CrossRef] [PubMed]
  3. J. M. Brosi, C. Koos, L. C. Andreani, M. Waldow, J. Leuthold, and W. Freude, “High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide,” Opt. Express16(6), 4177–4191 (2008). [CrossRef] [PubMed]
  4. J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express16(6), 4296–4301 (2008). [CrossRef] [PubMed]
  5. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005). [CrossRef] [PubMed]
  6. H. K. Tsang and Y. Liu, “Nonlinear optical properties of silicon waveguides,” Semicond. Sci. Technol.23(6), 064007 (2008). [CrossRef]
  7. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express15(2), 660–668 (2007). [CrossRef] [PubMed]
  8. G. Priem, P. Dumon, W. Bogaerts, D. Van Thourhout, G. Morthier, and R. Baets, “Optical bistability and pulsating behaviour in Silicon-On-Insulator ring resonator structures,” Opt. Express13(23), 9623–9628 (2005). [CrossRef] [PubMed]
  9. Q. Xu and M. Lipson, “Carrier-induced optical bistability in silicon ring resonators,” Opt. Lett.31(3), 341–343 (2006). [CrossRef] [PubMed]
  10. Q. Xu and M. Lipson, “All-optical logic based on silicon micro-ring resonators,” Opt. Express15(3), 924–929 (2007). [CrossRef] [PubMed]
  11. J. Ma and M. L. Povinelli, “Mechanical Kerr nonlinearities due to bipolar optical forces between deformable silicon waveguides,” Opt. Express19(11), 10102–10110 (2011). [CrossRef] [PubMed]
  12. W. H. P. Pernice, M. Li, and H. X. Tang, “A mechanical Kerr effect in deformable photonic media,” Appl. Phys. Lett.95(12), 123507 (2009). [CrossRef]
  13. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: Back-action at the mesoscale,” Science321(5893), 1172–1176 (2008). [CrossRef] [PubMed]
  14. R. Rivière, S. Deléglise, S. Weis, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state,” Phys. Rev. A83(6), 063835 (2011). [CrossRef]
  15. H. Rokhsari and K. J. Vahala, “Observation of Kerr nonlinearity in microcavities at room temperature,” Opt. Lett.30(4), 427–429 (2005). [CrossRef] [PubMed]
  16. I. S. Grudinin and K. J. Vahala, “Thermal instability of a compound resonator,” Opt. Express17(16), 14088–14097 (2009). [CrossRef] [PubMed]
  17. I. Grudinin, H. Lee, T. Chen, and K. Vahala, “Compensation of thermal nonlinearity effect in optical resonators,” Opt. Express19(8), 7365–7372 (2011). [CrossRef] [PubMed]
  18. S. Manipatruni, J. T. Robinson, and M. Lipson, “Optical Nonreciprocity in Optomechanical Structures,” Phys. Rev. Lett.102(21), 213903 (2009). [CrossRef] [PubMed]
  19. W. H. P. Pernice, M. Li, and H. X. Tang, “Theoretical investigation of the transverse optical force between a silicon nanowire waveguide and a substrate,” Opt. Express17(3), 1806–1816 (2009). [CrossRef] [PubMed]
  20. H. Cai, K. J. Xu, A. Q. Liu, Q. Fang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Nano-opto-mechanical actuator driven by gradient optical force,” Appl. Phys. Lett.100(1), 013108 (2012). [CrossRef]
  21. J. F. Tao, J. Wu, H. Cai, Q. X. Zhang, J. M. Tsai, J. T. Lin, and A. Q. Liu, “A nanomachined optical logic gate driven by gradient optical force,” Appl. Phys. Lett.100(11), 113104 (2012). [CrossRef]
  22. C. S. Ma, Y. Z. Xu, X. Yan, Z. K. Qin, and X. Y. Wang, “Optimization and analysis of series-coupled microring resonator arrays,” Opt. Commun.262(1), 41–46 (2006). [CrossRef]
  23. Y. M. Landobasa, S. Darmawan, and M. K. Chin, “Matrix analysis of 2-D microresonator lattice optical filters,” IEEE J. Quantum Electron.41(11), 1410–1418 (2005). [CrossRef]
  24. S. Pamidighantam, R. Puers, K. Baert, and H. A. C. Tilmans, “Pull-in voltage analysis of electrostatically actuated beam structures with fixed-fixed and fixed-free end conditions,” J. Micromech. Microeng.12(4), 458–464 (2002). [CrossRef]
  25. Z. Bor, K. Osvay, B. Racz, and G. Szabo, “Group refractive-index measurement by michelson interferometer,” Opt. Commun.78(2), 109–112 (1990). [CrossRef]
  26. H. Rokhsari and K. J. Vahala, “Observation of Kerr nonlinearity in microcavities at room temperature,” Opt. Lett.30(4), 427–429 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited