OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 16 — Jul. 30, 2012
  • pp: 18044–18065

Periodic plasmonic nanoantennas in a piecewise homogeneous background

Saba Siadat Mousavi, Pierre Berini, and Derek McNamara  »View Author Affiliations

Optics Express, Vol. 20, Issue 16, pp. 18044-18065 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (3770 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Periodic rectangular gold nanomonopoles and nanodipoles in a piecewise inhomogeneous background, consisting of a silicon substrate and a dielectric (aqueous) cover, have been investigated extensively via 3D finite-difference time-domain simulations. The transmittance, reflectance and absorptance response of the nanoantennas were studied as a function of their geometry (length, width, thickness, gap) and found to vary very strongly. The nanoantennas were found to resonate in a single surface plasmon mode supported by the corresponding rectangular cross-section nanowire waveguide, identified as the sab0 mode [Phys. Rev. B 63, 125417 (2001)]. We determine the propagation characteristics of this mode as a function of nanowire cross-section and wavelength, and we relate the modal results to the performance of the nanoantennas. An approximate expression resting on modal results is proposed for the resonant length of nanomonopoles, and a simple equivalent circuit, also resting on modal results, but involving transmission lines and a capacitor (modelling the gap) is proposed to determine the resonant wavelength of nanodipoles. The expression and the circuit yield results that are in good agreement with the full computations, and thus will prove useful in the design of nanoantennas.

© 2012 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(290.5850) Scattering : Scattering, particles
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optics at Surfaces

Original Manuscript: May 1, 2012
Revised Manuscript: July 10, 2012
Manuscript Accepted: July 11, 2012
Published: July 23, 2012

Saba Siadat Mousavi, Pierre Berini, and Derek McNamara, "Periodic plasmonic nanoantennas in a piecewise homogeneous background," Opt. Express 20, 18044-18065 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011). [CrossRef]
  2. P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012). [CrossRef] [PubMed]
  3. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1(3), 438–483 (2009). [CrossRef]
  4. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007). [CrossRef] [PubMed]
  5. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003). [CrossRef]
  6. E. Cubukcu and F. Capasso, “Optical nanorods antennas as dispersive one-dimensional Fabry-Perot resonators for surface plasmons,” Appl. Phys. Lett. 95(20), 201101 (2009). [CrossRef]
  7. H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16(12), 9144–9154 (2008). [CrossRef] [PubMed]
  8. P. Biagioni, M. Savoini, J. Huang, L. Duó, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80(15), 153409 (2009). [CrossRef]
  9. A. Alú and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2(5), 307–310 (2008). [CrossRef]
  10. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. L. Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometer-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008). [CrossRef]
  11. W. Ding, R. Bachelot, S. Kostcheev, P. Royer, and R. Espiau de Lamaestre, “Surface plasmon resonances in silver Bowtie nanoantennas with varied bow angles,” J. Appl. Phys. 108(12), 124314 (2010). [CrossRef]
  12. A. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101(4), 043901 (2008). [CrossRef] [PubMed]
  13. J. Aizpurua, G. W. Bryant, L. J. Richter, and F. J. Garcia de Abajo, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71(23), 235420 (2005). [CrossRef]
  14. W. Ding, R. Bachelot, R. Espiau de Lamaestre, D. Macias, A.-L. Baudrion, and P. Royer, “Understanding near/far-field engineering of optical dimer antennas through geometry modification,” Opt. Express 17(23), 21228–21239 (2009). [CrossRef] [PubMed]
  15. E. S. Barnard, J. S. White, A. Chandran, and M. L. Brongersma, “Spectral properties of plasmonic resonator antennas,” Opt. Express 16(21), 16529–16537 (2008). [CrossRef] [PubMed]
  16. J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Perot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9(6), 2372–2377 (2009). [CrossRef] [PubMed]
  17. T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Optical Nanorod Antennas Modeled as Cavities for Dipolar Emitters: Evolution of Sub- and Super-Radiant Modes,” Nano Lett. 11(3), 1020–1024 (2011). [CrossRef] [PubMed]
  18. P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant Optical Antennas,” Science 308(5728), 1607–1609 (2005). [CrossRef] [PubMed]
  19. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009). [CrossRef]
  20. FDTD Solutions v. 7.5.6, Lumerical Solutions Inc., Vancouver, Canada.
  21. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  22. D. J. Segelstein, The complex refractive index of water, M.Sc. Thesis, University of Missouri – Kansas City, 1981.
  23. R. C. Boonton, Jr., Computational Methods for Electromagnetics and Microwaves (Wiley-Interscience, 1992)
  24. T. Itoh, “Analysis of microstrip resonators,” IEEE Trans. Microw. Theory Tech. 22(11), 946–952 (1974). [CrossRef]
  25. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000). [CrossRef]
  26. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures,” Phys. Rev. B 63(12), 125417 (2001). [CrossRef]
  27. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, “Plasmon Hybridization in Nanoparticle Dimers,” Nano Lett. 4(5), 899–903 (2004). [CrossRef]
  28. D. M. Pozar, Microwave Engineering (Wiley, 2005).
  29. H. G. Booker, Electromagnetism (Peter Peregrinus, 1982).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited