OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 16 — Jul. 30, 2012
  • pp: 18127–18137

Short-wavelength upconversion emissions in Ho3+/Yb3+ codoped glass ceramic and the optical thermometry behavior

Wei Xu, Xiaoyang Gao, Longjiang Zheng, Zhiguo Zhang, and Wenwu Cao  »View Author Affiliations

Optics Express, Vol. 20, Issue 16, pp. 18127-18137 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1829 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Ho3+/Yb3+ codoped glass ceramic was prepared by melt-quenching and subsequent thermal treatment. Under a 980 nm diode laser excitation, upconversion emissions from Ho3+ ions centered at 540, 650, and 750 nm were greatly enhanced compared with those in the precursor glass. Especially, the short-wavelength upconversion emissions centered at 360, 385, 418, 445, and 485 nm were successfully obtained in the glass ceramic. An explanation for this phenomenon is given based on the fluorescence decay curve measurements. In addition, an optical temperature sensor based on the blue upconversion emissions from 5F2,3/3K85I8 and 5F1/5G65I8 transitions in Ho3+/Yb3+ codoped glass ceramic has been developed. It was found that by using fluorescence intensity ratio technique, appreciable sensitivity for temperature measurement can be achieved by using the Ho3+/Yb3+ codoped glass ceramic. This result makes the Ho3+/Yb3+ codoped glass ceramic be a promising candidate for sensitive optical temperature sensor with high resolution and good accuracy.

© 2012 OSA

OCIS Codes
(160.4760) Materials : Optical properties
(190.7220) Nonlinear optics : Upconversion
(300.2140) Spectroscopy : Emission
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:

Original Manuscript: May 22, 2012
Revised Manuscript: July 4, 2012
Manuscript Accepted: July 4, 2012
Published: July 23, 2012

Wei Xu, Xiaoyang Gao, Longjiang Zheng, Zhiguo Zhang, and Wenwu Cao, "Short-wavelength upconversion emissions in Ho3+/Yb3+ codoped glass ceramic and the optical thermometry behavior," Opt. Express 20, 18127-18137 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Auzel, “Upconversion and anti-stokes processes with f and d ions in solids,” Chem. Rev.104(1), 139–174 (2004). [CrossRef] [PubMed]
  2. E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science273(5279), 1185–1189 (1996). [CrossRef]
  3. S. Sivakumar, F. C. J. M. van Veggel, and P. S. May, “Near-infrared (NIR) to red and green up-conversion emission from silica sol-gel thin films made with La0.45Yb0.50Er0.05F3 nanoparticles, hetero-looping-enhanced energy transfer (Hetero-LEET): a new up-conversion process,” J. Am. Chem. Soc.129(3), 620–625 (2007). [CrossRef] [PubMed]
  4. A. Patra, C. S. Friend, R. Kapoor, and P. N. Prasad, “Upconversion in Er3+: ZrO2 nanocrystals,” J. Phys. Chem. B106(8), 1909–1912 (2002). [CrossRef]
  5. J. A. Capobianco, J. C. Boyer, F. Vetrone, A. Speghini, and M. Bettinelli, “Optical spectroscopy and upconversion studies of Ho3+-doped bulk and nanocrystalline Y2O3,” Chem. Mater.14(7), 2915–2921 (2002). [CrossRef]
  6. Y. Guyot, R. Moncorge, L. F. Merkle, A. Pinto, B. Mclntosh, and H. Verdun, “Luminescence properties of Y2O3 single crystals doped with Pr3+ or Tm3+ and codoped with Yb3+, Tb3+ or Ho3+ ions,” Opt. Mater.5(1-2), 127–136 (1996). [CrossRef]
  7. X. Wang, Y. Bu, S. Xiao, X. Yang, and J. W. Ding, “Upconversion in Ho3+-doped YbF3 particle prepared by coprecipation method,” Appl. Phys. B93(4), 801–807 (2008). [CrossRef]
  8. G. Y. Chen, G. H. Yang, B. Aghahadi, H. J. Liang, Y. Liu, L. Li, and Z. G. Zhang, “Ultraviolet-blue upconversion emissions of Ho3+ ions,” J. Opt. Soc. Am. B27(6), 1158–1164 (2010). [CrossRef]
  9. J. F. Suyer, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater.27(6), 1111–1130 (2005). [CrossRef]
  10. F. Lahoz, I. R. Martín, and A. Briones, “Infrared-laser induced photon avalanche upconversion in Ho3+–Yb3+ codoped fluoroindate glasses,” J. Appl. Phys.95(6), 2957–2962 (2004). [CrossRef]
  11. G. J. Ding, F. Gao, G. H. Wu, and D. H. Bao, “Bright up-conversion green photoluminescence in Ho3+-Yb3+ co-doped Bi4Ti3O12 ferroelectric thin films,” J. Appl. Phys.109(12), 123101 (2011). [CrossRef]
  12. F. Lahoz, I. R. Martín, and J. M. Calvilla-Quintero, “Ultraviolet and white phonon avalanche upconversion in Ho3+ doped nanophase glass ceramic,” Appl. Phys. Lett.86(5), 051106 (2005). [CrossRef]
  13. D. Q. Chen, Y. S. Wang, Y. L. Yu, and P. Huang, “Intense ultraviolet upconversion luminescence from Tm3+/Yb3+:beta-YF3 nanocrystals embedded glass ceramic,” Appl. Phys. Lett.91(5), 051920 (2007). [CrossRef]
  14. S. Tanabe, H. Hayashi, T. Hanada, and N. Onodera, “Fluorescence properties of Er3+ ions in glass ceramics containing LaF3 nanocrystals,” Opt. Mater.19(3), 343–349 (2002). [CrossRef]
  15. Y. Kawamoto, R. Kanno, and J. Qiu, “Upconversion luminescence of Er3+ in transparent SiO2-PbF2-ErF3 glass ceramic,” J. Mater. Sci.33(1), 63–67 (1998). [CrossRef]
  16. B. N. Samson, P. A. Tick, and N. F. Borrelli, “Efficient neodymium-doped glass-ceramic fiber laser and amplifier,” Opt. Lett.26(3), 145–147 (2001). [CrossRef] [PubMed]
  17. M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd: YLF and Nd: YAG,” Appl. Phys. Lett.58, 16076–16092 (1998).
  18. K. Y. Wu, J. B. Cui, X. X. Kong, and Y. J. Wang, “Temperature dependent upconversion luminescence of Yb/Er codoped NaYF4 nanocrystals,” J. Appl. Phys.110(5), 053510 (2011). [CrossRef]
  19. H. Berthou and C. K. Jörgensen, “Optical-fiber temperature sensor based on upconversion-excited fluorescence,” Opt. Lett.15(19), 1100–1102 (1990). [CrossRef] [PubMed]
  20. S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys.94(8), 4743–4756 (2003). [CrossRef]
  21. V. K. Rai, “Temperature sensor and optical sensors,” Appl. Phys. B88(2), 297–303 (2007). [CrossRef]
  22. V. Lavín, F. Lahoz, I. R. Martín, U. R. Rodríguze-Mendoza, and J. M. Cáceres, “Infrared-to-visible photon avalanche upconversion dynamics in Ho3+-doped fluorozirconate glasses at room temperature,” Opt. Mater.27(11), 1754–1761 (2005). [CrossRef]
  23. L. Gomes, L. C. Courrol, L. V. G. Tarelho, and I. M. Ranieri, “Cross-relaxation process between +3 rare-earth ions in LiYF4 crystals,” Phys. Rev. B Condens. Matter54(6), 3825–3829 (1996). [CrossRef] [PubMed]
  24. S. Tanabe, S. Yoshii, K. Hirao, and N. Soga, “Upconversion properties, multiphonon relaxation, and local environment of rare earth ions in fluorophosphates glasses,” Phys. Rev.45(9), 4620–4625 (1992). [CrossRef]
  25. F. Lahoz, I. R. Matín, and J. Méndez-Ramos, “Dopant distribution in a Tm3+-Yb3+ codoped silica based glass ceramic: an infrared-laser induced upconversion study,” J. Appl. Phys.120, 6180–6190 (2004).
  26. D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys.21(5), 836–850 (1953). [CrossRef]
  27. S. A. Wade, S. F. Collins, G. W. Baxter, and G. Monnom, “Effect of strain on temperature measurements using the fluorescence intensity ratio technique (with Nd3+ and Yb3+ doped silica fibers),” Rev. Sci. Instrum.72(8), 3180–3185 (2001). [CrossRef]
  28. P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto, J. A. Medeiros Neto, and A. S. B. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+ codoped chalcogenide glass,” Appl. Phys. Lett.73(5), 578–580 (1998). [CrossRef]
  29. P. Haro-González, I. R. Martín, L. L. Martín, F. S. León-Luis, C. Pérez-Rodríguez, and V. Lavín, “Characterization of Er3+ and Nd3+ doped strontium Barium Niobate glass ceramic as temperature sensors,” Opt. Mater.33(5), 742–745 (2011). [CrossRef]
  30. V. K. Rai, D. K. Rai, and S. B. Rai, “Pr3+ doped lithium tellurite glass as a temperature sensor,” Sen. Actuators A128(1), 14–17 (2006). [CrossRef]
  31. S. A. Wade, J. C. Muscat, S. F. Collins, and G. W. Baxter, “Nd3+ doped optical temperature sensor using the fluorescence intensity ratio technique,” Rev. Sci. Instrum.70(11), 4279–4282 (1999). [CrossRef]
  32. E. Maurice, S. A. Wade, S. F. Collins, G. Monnom, and G. W. Baxter, “Self-referenced point temperature sensor based on a fluorescence intensity ratio in Yb3+ doped silica fiber,” Appl. Opt.36(31), 8264–8269 (1997). [CrossRef] [PubMed]
  33. B. S. Cao, Y. Y. He, Z. Q. Feng, Y. S. Li, and B. Dong, “Optical temperature sensing behavior of enhanced green upconversion emissions from Er3+-Mo:Yb2Ti2O7 nanophosphor,” Sen. Actuators B159(1), 8–11 (2011). [CrossRef]
  34. S. F. León-Luis, U. R. Rodríguez-Mendoza, E. Lalla, and V. Lavín, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sen. Actuators B158(1), 208–213 (2011). [CrossRef]
  35. R. K. Verma and S. B. Rai, “Laser induced optical heating from Yb3+/Ho3+: Ca12Al14O33 and its applicability as a thermal probe,” J. Quant. Spectrosc. Radiat. Transf.113(12), 1594–1600 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited