OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 16 — Jul. 30, 2012
  • pp: 18138–18144

Electrically-controlled rapid femtosecond pulse duration switching and continuous picosecond pulse duration tuning in an ultrafast Cr4+:forsterite laser.

C. Crombie, D. A. Walsh, W. Lu, S. Zhang, Z. Zhang, K. Kennedy, S. Calvez, W. Sibbett, and C.T.A. Brown  »View Author Affiliations

Optics Express, Vol. 20, Issue 16, pp. 18138-18144 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1478 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate rapid switching between picosecond and femtosecond operational regimes in a Cr4+:forsterite laser, using an electrically-contacted GaInNAs SESAM with saturable absorption characteristics controlled via the quantum-confined Stark effect. Additionally, continuous picosecond pulse duration tuning by over a factor 3 is reported.

© 2012 OSA

OCIS Codes
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.7090) Lasers and laser optics : Ultrafast lasers
(260.6580) Physical optics : Stark effect
(320.7160) Ultrafast optics : Ultrafast technology
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Lasers and Laser Optics

Original Manuscript: May 30, 2012
Revised Manuscript: July 17, 2012
Manuscript Accepted: July 17, 2012
Published: July 23, 2012

C. Crombie, D. A. Walsh, W. Lu, S. Zhang, Z. Zhang, K. Kennedy, S. Calvez, W. Sibbett, and C.T.A. Brown, "Electrically-controlled rapid femtosecond pulse duration switching and continuous picosecond pulse duration tuning in an ultrafast Cr4+:forsterite laser.," Opt. Express 20, 18138-18144 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Sibbett, A. A. Lagatsky, and C. T. A. Brown, “The development and application of femtosecond laser systems,” Opt. Express20(7), 6989–7001 (2012). [CrossRef] [PubMed]
  2. S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron.2(3), 454–464 (1996). [CrossRef]
  3. U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996). [CrossRef]
  4. V. G. Savitski, D. Burns, and S. Calvez, “Optically-pumped saturable absorber for fast switching between continuous-wave and passively mode-locked regimes of a Nd:YVO(4) laser,” Opt. Express17(7), 5373–5378 (2009). [CrossRef] [PubMed]
  5. V. G. Savitski, N. K. Metzger, S. Calvez, D. Burns, W. Sibbett, and C. T. A. Brown, “Optical trapping with “on-demand” two-photon luminescence using Cr:LiSAF laser with optically addressed saturable Bragg reflector,” Opt. Express20(7), 7066–7070 (2012). [CrossRef] [PubMed]
  6. B. Stormont, E. U. Rafailov, I. G. Cormack, A. Mooradian, and W. Sibbett, “Extended-cavity surface-emitting diode laser as active mirror controlling modelocked Ti: sapphire laser,” Electron. Lett.40(12), 732–734 (2004). [CrossRef]
  7. A. A. Lagatsky, E. U. Rafailov, W. Sibbett, D. A. Livshits, A. E. Zhukov, and V. M. Ustinov, “Quantum-dot-based saturable absorber with p-n junction for mode-locking of solid-state lasers,” IEEE Photon. Technol. Lett.17(2), 294–296 (2005). [CrossRef]
  8. S. A. Zolotovskaya, K. G. Wilcox, A. Abdolvand, D. A. Livshits, and E. U. Rafailov, “Electronically controlled pulse duration passively modelocked Cr: forsterite laser,” IEEE Photon. Technol. Lett.21(16), 1124–1126 (2009). [CrossRef]
  9. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structures - the quantum-confined Stark-effect,” Phys. Rev. Lett.53(22), 2173–2176 (1984). [CrossRef]
  10. C. T. A. Brown, D. J. Stevenson, X. Tsampoula, C. McDougall, A. A. Lagatsky, W. Sibbett, F. J. Gunn-Moore, and K. Dholakia, “Enhanced operation of femtosecond lasers and applications in cell transfection,” J Biophoton.1(3), 183–199 (2008). [CrossRef] [PubMed]
  11. V. Liverini, S. Schon, R. Grange, M. Haiml, S. C. Zeller, and U. Keller, “Low-loss GaInNAs saturable absorber mode locking a 1.3-mu m solid-state laser,” Appl. Phys. Lett.84(20), 4002–4004 (2004). [CrossRef]
  12. A. McWilliam, A. A. Lagatsky, C. G. Leburn, P. Fischer, C. T. A. Brown, G. J. Valentine, A. J. Kemp, S. Calvez, D. Burns, M. D. Dawson, M. Pessa, and W. Sibbett, “Low-loss GaInNAs saturable Bragg reflector for mode-locking of a femtosecond Cr4+: Forsterite-laser,” IEEE Photon. Technol. Lett.17(11), 2292–2294 (2005). [CrossRef]
  13. R. Grange, A. Rutz, V. Liverini, M. Haiml, S. Schon, and U. Keller, “Nonlinear absorption edge properties of 1.3-mu m GaInNAs saturable absorbers,” Appl. Phys. Lett.87(13), 132103 (2005). [CrossRef]
  14. J. Misiewicz, P. Sitarek, G. Sek, and R. Kudrawiec, “Semiconductor heterostructures and device structures investigated by photoreflectance spectroscopy,” Mater. Sci.-Poland21, 263–320 (2003).
  15. S. L. Chuang, Physics of Photonic Devices 1 ed., Wiley Series in Pure and Applied Optics (Wiley,2009).
  16. P. Cerný, G. Valentine, D. Burns, and K. McEwan, “Passive stabilization of a passively mode-locked laser by nonlinear absorption in indium phosphide,” Opt. Lett.29(12), 1387–1389 (2004). [CrossRef] [PubMed]
  17. F. X. Kärtner and U. Keller, “Stabilization of solitonlike pulses with a slow saturable absorber,” Opt. Lett.20(1), 16–18 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited