OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 16 — Jul. 30, 2012
  • pp: 18165–18172

Dissipative soliton acceleration in nonlinear optical lattices

Yannis Kominis, Panagiotis Papagiannis, and Sotiris Droulias  »View Author Affiliations

Optics Express, Vol. 20, Issue 16, pp. 18165-18172 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (5783 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An effective mechanism for dissipative soliton acceleration in nonlinear optical lattices under the presence of linear gain and nonlinear loss is presented. The key idea for soliton acceleration consists of the dynamical reduction of the amplitude of the effective potential experienced by the soliton so that its kinetic energy eventually increases. This is possible through the dependence of the effective potential amplitude on the soliton mass, which can be varied due to the presence of gain and loss mechanisms. In contrast to the case where either the linear or the nonlinear refractive index is spatially modulated, we show that when both indices are modulated with the same period we can have soliton acceleration and mass increasing as well as stable soliton propagation with constant non-oscillating velocity. The acceleration mechanism is shown to be very robust for a wide range of configurations.

© 2012 OSA

OCIS Codes
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in
(190.4720) Nonlinear optics : Optical nonlinearities of condensed matter
(190.6135) Nonlinear optics : Spatial solitons

ToC Category:
Nonlinear Optics

Original Manuscript: June 13, 2012
Revised Manuscript: July 16, 2012
Manuscript Accepted: July 16, 2012
Published: July 23, 2012

Yannis Kominis, Panagiotis Papagiannis, and Sotiris Droulias, "Dissipative soliton acceleration in nonlinear optical lattices," Opt. Express 20, 18165-18172 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature424, 817–823 (2003). [CrossRef] [PubMed]
  2. F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, “Discrete solitons in optics,” Phys. Rep.463, 1–126 (2008). [CrossRef]
  3. Y. V. Kartashov, B. A. Malomed, and L. Torner, “Solitons in nonlinear lattices,” Rev. Mod. Phys.83, 247–305 (2011). [CrossRef]
  4. I. L. Garanovich, S. Longhi, A. A. Sukhorukov, and Y. S. Kivshar, “Light propagation and localization in modulated photonic lattices and waveguides,” Phys. Rep. (in press), doi: . [CrossRef]
  5. U. Peschel, T. Pertsch, and F. Lederer, “Optical Bloch oscillations in waveguide arrays,” Opt. Lett.23, 1701–1703 (1998). [CrossRef]
  6. T. Pertsch, P. Dannberg, W. Elflein, A. Brauer, and F. Lederer, “Optical Bloch oscillations in temperature tuned waveguide arrays,” Phys. Rev. Lett.83, 4752–4755 (1999). [CrossRef]
  7. K. G. Makris, D. N. Christodoulides, O. Peleg, M. Segev, and D. Kip, “Optical transitions and Rabi oscillations in waveguide arrays,” Opt. Express16, 10309–10314 (2008). [CrossRef] [PubMed]
  8. K. Shandarova, C. E. Ruter, D. Kip, K. G. Makris, D. N. Christodoulides, O. Peleg, and M. Segev, “Experimental observation of Rabi oscillations in photonic lattices,” Phys. Rev. Lett.102, 123905 (2009). [CrossRef] [PubMed]
  9. Y. V. Kartashov and V. A. Vysloukh, “Anderson localization of solitons in optical lattices with random frequency modulation,” Phys. Rev. E72, 026606 (2005). [CrossRef]
  10. T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature446, 52–55 (2007). [CrossRef] [PubMed]
  11. S. Longhi, “Quantum-optical analogies using photonic structures,” Laser Photon. Rev.3, 243–261 (2009). [CrossRef]
  12. F. S. Cataliotti, S. Burger, C. Fort, P. Maddaloni, F. Minardi, A. Trombettoni, A. Smerzi, and M. Inguscio, “Josephson junction arrays with Bose-Einstein condensates,” Science293, 843–846 (2001). [CrossRef] [PubMed]
  13. S. Burger, F. S. Cataliotti, C. Fort, F. Minardi, M. Inguscio, M. L. Chiofalo, and M. P. Tosi, “Superfluid and dissipative dynamics of a Bose–Einstein condensate in a periodic optical potential,” Phys. Rev. Lett.86, 4447–4450 (2001). [CrossRef] [PubMed]
  14. A. Trombettoni and A. Smerzi, “Discrete solitons and breathers with dilute Bose-Einstein condensates,” Phys. Rev. Lett.86, 2353–2356 (2001). [CrossRef] [PubMed]
  15. F. Kh. Abdullaev, B. B. Baizakov, S. A. Darmanyan, V. V. Konotop, and M. Salerno, “Nonlinear excitations in arrays of Bose–Einstein condensates,” Phys. Rev. A64, 436061–4360610 (2001). [CrossRef]
  16. J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A4, 651–654 (1987). [CrossRef]
  17. J. Durnin, J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett.58, 1499–1501 (1987). [CrossRef] [PubMed]
  18. G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett.32, 979–981 (2007). [CrossRef] [PubMed]
  19. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett.99, 213901 (2007). [CrossRef]
  20. A. Chong, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Airy–Bessel wave packets as versatile linear light bullets,” Nat. Photonics4, 103–106 (2010). [CrossRef]
  21. I. Kaminer, M. Segev, and D. N. Christodoulides, “Self-accelerating self-trapped optical beams,” Phys. Rev. Lett.106, 213903 (2011). [CrossRef] [PubMed]
  22. R. El-Ganainy, K. G. Makris, M. A. Miri, D. N. Christodoulides, and Z. Chen, “Discrete beam acceleration in uniform waveguide arrays,” Phys. Rev. A84, 023842 (2011). [CrossRef]
  23. D. J. Kaup and A. C. Newell, “Solitons as particles, oscillators, and in slowly changing media: a singular perturbation theory,” Proc. R. Soc. London, Ser. A361, 413–446 (1978). [CrossRef]
  24. Y. S. Kivshar and B. A. Malomed, “Dynamics of solitons in nearly integrable systems,” Rev. Mod. Phys.61, 763–915 (1989). [CrossRef]
  25. V. A. Brazhnyi, V. V. Konotop, and V. Kuzmiak, “Dynamics of matter solitons in weakly modulated optical lattices,” Phys. Rev. A70, 043604 (2004). [CrossRef]
  26. R. Scharf and A. R. Bishop, “Length-scale competition for the one-dimensional nonlinear Schrödinger equation with spatially periodic potentials,” Phys. Rev. E47, 1375–1383 (1993). [CrossRef]
  27. D. Polleti, T. J. Alexander, E. A. Ostrovskaya, B. Li, and Y. S. Kivshar, “Dynamics of matter-wave solitons in a ratchet potential,” Phys. Rev. Lett.101, 150403 (2008). [CrossRef]
  28. G. Assanto, L. A. Cisneros, A. A. Minzoni, B. D. Skuse, N. F. Smyth, and A. L Worthy, “Soliton steering by longitudinal modulation of the nonlinearity in waveguide arrays,” Phys. Rev. Lett.104, 053903 (2010). [CrossRef] [PubMed]
  29. M. Rietmann, R. Carretero-Gonzalez, and R. Chacon, “Controlling directed transport of matter wave solitons using the ratchet effect,” Phys. Rev. A83, 053617 (2011). [CrossRef]
  30. P. Papagiannis, Y. Kominis, and K. Hizanidis, “Power- and momentum-dependent soliton dynamics in lattices with longitudinal modulation,” Phys. Rev. A84, 013820 (2011). [CrossRef]
  31. S. Flach, O. Yevtushenko, and Y. Zolotaryuk, “Directed current due to broken time-space symmetry,” Phys. Rev. Lett.84, 2358–2361 (2000). [CrossRef] [PubMed]
  32. N. Akhmediev and A. Ankiewicz, eds., Dissipative Solitons, Lect. Notes Phys. (Springer, 2005), Vol. 661. [CrossRef]
  33. F. Kh. Abdullaev, A. Gammal, H. L. F. da Luz, and L. Tomio, “Dissipative dynamics of matter-wave solitons in a nonlinear optical lattice,” Phys. Rev. A76, 043611 (2007). [CrossRef]
  34. F. Kh. Abdullaev, V. V. Konotop, M. Salerno, and A. V. Yulin, “Dissipative periodic waves, solitons and breathers of the nonlinear Schrödinger equation with complex potentials,” Phys. Rev. E82, 056606 (2010). [CrossRef]
  35. H. Sakaguchi and B. A. Malomed, “Matter-wave solitons in nonlinear optical lattices,” Phys. Rev. A72, 046610 (2005).
  36. H. Sakaguchi and B. A. Malomed, “Solitons in combined linear and nonlinear lattice potentials,” Phys. Rev. A81, 013624 (2010). [CrossRef]
  37. B. A. Malomed, “Evolution of nonsoliton and ’quasi-classical’ wavetrains in nonlinear Schrödinger and Korteweg–De Vries equations with dissipative perturbations,” Physica D29, 155–172 (1987). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited