OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 16 — Jul. 30, 2012
  • pp: 18180–18187

High speed adaptive liquid microlens array

C. U. Murade, D. van der Ende, and F. Mugele  »View Author Affiliations


Optics Express, Vol. 20, Issue 16, pp. 18180-18187 (2012)
http://dx.doi.org/10.1364/OE.20.018180


View Full Text Article

Enhanced HTML    Acrobat PDF (1654 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Liquid microlenses are attractive for adaptive optics because they offer the potential for both high speed actuation and parallelization into large arrays. Yet, in conventional designs, resonances of the liquid and the complexity of driving mechanisms and/or the device architecture have hampered a successful integration of both aspects. Here we present an array of up to 100 microlenses with synchronous modulation of the focal length at frequencies beyond 1 kHz using electrowetting. Our novel concept combines pinned contact lines at the edge of each microlens with an electrowetting controlled regulation of the pressure that actuates all microlenses in parallel. This design enables the development of various shapes of microlenses. The design presented here has potential applications in rapid parallel optical switches, artificial compound eye and three dimensional imaging.

© 2012 OSA

OCIS Codes
(000.4930) General : Other topics of general interest
(080.3630) Geometric optics : Lenses
(230.0230) Optical devices : Optical devices
(230.2090) Optical devices : Electro-optical devices
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Adaptive Optics

History
Original Manuscript: May 2, 2012
Revised Manuscript: July 16, 2012
Manuscript Accepted: July 16, 2012
Published: July 24, 2012

Virtual Issues
Vol. 7, Iss. 9 Virtual Journal for Biomedical Optics

Citation
C. U. Murade, D. van der Ende, and F. Mugele, "High speed adaptive liquid microlens array," Opt. Express 20, 18180-18187 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-16-18180


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. V. Brown, G. G. Wells, M. I. Newton, and G. McHale, “Voltage-programmable liquid optical interface,” Nat. Photonics3(7), 403–405 (2009). [CrossRef]
  2. D. Erickson, D. Sinton, and D. Psaltis, “Optofluidics for energy applications,” Nat. Photonics5(10), 583–590 (2011). [CrossRef]
  3. L. Dong, A. K. Agarwal, D. J. Beebe, and H. R. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature442(7102), 551–554 (2006). [CrossRef] [PubMed]
  4. C. A. López and A. H. Hirsa, “Fast focusing using a pinned-contact oscillating liquid lens,” Nat. Photonics2(10), 610–613 (2008). [CrossRef]
  5. T. Krupenkin and J. A. Taylor, “Reverse electrowetting as a new approach to high-power energy harvesting,” Nat. Commun.2, 448 (2011). [CrossRef] [PubMed]
  6. H. Gu, C. U. Murade, M. H. G. Duits, and F. Mugele, “A microfluidic platform for on-demand formation and merging of microdroplets using electric control,” Biomicrofluidics5(1), 011101 (2011). [CrossRef] [PubMed]
  7. U. Levy and R. Shamai, “Tunable optofluidic devices,” Microfluid. Nanofluid.4(1-2), 97–105 (2008). [CrossRef]
  8. P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, “Fluidic lenses with variable focal length,” Appl. Phys. Lett.88(4), 041120 (2006). [CrossRef]
  9. N. R. Smith, L. L. Hou, J. L. Zhang, and J. Heikenfeld, “Fabrication and Demonstration of Electrowetting Liquid Lens Arrays,” J. Disp. Technol.5(11), 411–413 (2009). [CrossRef]
  10. B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E3(2), 159–163 (2000). [CrossRef]
  11. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett.85(7), 1128–1130 (2004). [CrossRef]
  12. N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms,” Opt. Express14(14), 6557–6563 (2006). [CrossRef] [PubMed]
  13. L. Miccio, A. Finizio, S. Grilli, V. Vespini, M. Paturzo, S. De Nicola, and P. Ferraro, “Tunable liquid microlens arrays in electrode-less configuration and their accurate characterization by interference microscopy,” Opt. Express17(4), 2487–2499 (2009). [CrossRef] [PubMed]
  14. C. U. Murade, J. M. Oh, D. van den Ende, and F. Mugele, “Electrowetting driven optical switch and tunable aperture,” Opt. Express19(16), 15525–15531 (2011). [CrossRef] [PubMed]
  15. J. M. Oh, S. H. Ko, and K. H. Kang, “Analysis of electrowetting-driven spreading of a drop in air,” Phys. Fluids22(3), 032002 (2010). [CrossRef]
  16. A. Staicu and F. Mugele, “Electrowetting-induced oil film entrapment and instability,” Phys. Rev. Lett.97(16), 167801 (2006). [CrossRef] [PubMed]
  17. F. Mugele and J. C. Baret, “Electrowetting: From basics to applications,” J. Phys. Condens. Matter17(28), R705–R774 (2005). [CrossRef]
  18. F. Li and F. Mugele, “How to make sticky surfaces slippery: Contact angle hysteresis in electrowetting with alternating voltage,” Appl. Phys. Lett.92(24), 244108 (2008). [CrossRef]
  19. D. J. C. M. 't Mannetje, C. U. Murade, D. van den Ende, and F. Mugele, “Electrically assisted drop sliding on inclined planes,” Appl. Phys. Lett.98(1), 014102 (2011). [CrossRef]
  20. E. A. Theisen, M. J. Vogel, C. A. Lopez, A. H. Hirsa, and P. H. Steen, “Capillary dynamics of coupled spherical-cap droplets,” J. Fluid Mech.580, 495–505 (2007). [CrossRef]
  21. H. Rathgen, K. Sugiyama, C. D. Ohl, D. Lohse, and F. Mugele, “Nanometer-resolved collective micromeniscus oscillations through optical diffraction,” Phys. Rev. Lett.99(21), 214501 (2007). [CrossRef] [PubMed]
  22. J. M. Oh, D. Legendre, and F. Mugele, “Shaken not stirred -On internal flow patterns in oscillating sessile drops,” Europhys. Lett.98(3), 34003 (2012). [CrossRef]
  23. I. Roghair, C. U. Murade, J. M. Oh, D. Langevin, D. van den Ende and F. Mugele (article to be submitted).
  24. F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt.36(7), 1598–1603 (1997). [CrossRef] [PubMed]
  25. Like electrowetting, intergral photography was pioneered by the 1908 Nobel prize winner Gabriel Lippmann. SeeG. Lippmann, “Epreuves reversible donnant la sensation du relief,” J. Phys.7, 821–825 (1908).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (268 KB)      QuickTime
» Media 2: AVI (974 KB)      QuickTime
» Media 3: AVI (1085 KB)      QuickTime
» Media 4: AVI (646 KB)      QuickTime
» Media 5: AVI (3225 KB)      QuickTime
» Media 6: AVI (479 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited