OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 16 — Jul. 30, 2012
  • pp: 18194–18201

Static hyperspectral imaging polarimeter for full linear Stokes parameters

Tingkui Mu, Chunmin Zhang, Chenling Jia, and Wenyi Ren  »View Author Affiliations


Optics Express, Vol. 20, Issue 16, pp. 18194-18201 (2012)
http://dx.doi.org/10.1364/OE.20.018194


View Full Text Article

Enhanced HTML    Acrobat PDF (916 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A compact, static hyperspectral imaging linear polarimeter (HILP) based on a Savart interferometer (SI) is conceptually described. It improves the existing SI by replacing front polarizer with two Wollaston prisms, and can simultaneously acquire four interferograms corresponding to four linearly polarized lights on a single CCD. The spectral dependence of linear Stokes parameters can be recovered with Fourier transformation. Since there is no rotating or moving parts, the system is relatively robust. The interference model of the HILP is proved. The performance of the system is demonstrated through a numerical simulation, and the methods for compensating the imperfection of the polarization elements are described.

© 2012 OSA

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(260.3160) Physical optics : Interference
(110.5405) Imaging systems : Polarimetric imaging

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: May 22, 2012
Revised Manuscript: July 11, 2012
Manuscript Accepted: July 18, 2012
Published: July 24, 2012

Citation
Tingkui Mu, Chunmin Zhang, Chenling Jia, and Wenyi Ren, "Static hyperspectral imaging polarimeter for full linear Stokes parameters," Opt. Express 20, 18194-18201 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-16-18194


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt.45(22), 5453–5469 (2006). [CrossRef] [PubMed]
  2. E. A. Sornsin and R. A. Chipman, “Alignment and calibration of an infrared achromatic retarder using FTIR Mueller matrix spectropolarimetry,” Proc. SPIE3121, 28–34 (1997). [CrossRef]
  3. D. J. Diner, R. A. Chipman, N. Beaudry, B. Cairns, L. D. Food, S. A. Macenka, T. J. Cunningham, S. Seshadri, and C. Keller, “An integrated multiangle, multispectral, and polarimetric imaging concept for aerosol remote sensing from space,” Proc. SPIE5659, 88–96 (2005). [CrossRef]
  4. N. Hagen, A. M. Locke, D. S. Sabatke, E. L. Dereniak, and D. T. Sass, “Methods and applications of snapshot spectropolarimetry,” Proc. SPIE5432, 167–174 (2004). [CrossRef]
  5. S. H. Jones, F. J. Iannarilli, and P. L. Kebabian, “Realization of quantitative-grade fieldable snapshot imaging spectropolarimeter,” Opt. Express12(26), 6559–6573 (2004). [CrossRef] [PubMed]
  6. F. Snik, T. Karalidi, and C. U. Keller, “Spectral modulation for full linear polarimetry,” Appl. Opt.48(7), 1337–1346 (2009). [CrossRef] [PubMed]
  7. R. G. Nadeau, W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, and K. Messmer, “Orthogonal polarization spectral imaging: A new method for study of the microcirculation,” Nat. Med.5(10), 1209–1212 (1999). [CrossRef] [PubMed]
  8. R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med.7(11), 1245–1248 (2001). [CrossRef] [PubMed]
  9. D. Goldstein, Polarized Light, 2 ed. (Marcel Dekker, 2003).
  10. J. S. Tyo and T. S. Turner., “Variable-retardance, Fourier-transform imaging spectropolarimeters for visible spectrum remote sensing,” Appl. Opt.40(9), 1450–1458 (2001). [CrossRef] [PubMed]
  11. J. E. Ahmad and Y. Takakura, “Error analysis for rotating active Stokes-Mueller imaging polarimeters,” Opt. Lett.31(19), 2858–2860 (2006). [CrossRef] [PubMed]
  12. S. Guyot, M. Anastasiadou, E. Deléchelle, and A. De Martino, “Registration scheme suitable to Mueller matrix imaging for biomedical applications,” Opt. Express15(12), 7393–7400 (2007). [CrossRef] [PubMed]
  13. K. Oka and T. Kato, “Spectroscopic polarimetry with a channeled spectrum,” Opt. Lett.24(21), 1475–1477 (1999). [CrossRef] [PubMed]
  14. D. Sabatke, A. Locke, E. L. Dereniak, M. Descour, J. Garcia, T. Hamilton, and R. W. McMillan, “Snapshot imaging spectropolarimeter,” Opt. Eng.41(5), 1048–1054 (2002). [CrossRef]
  15. M. W. Kudenov, N. A. Hagen, E. L. Dereniak, and G. R. Gerhart, “Fourier transform channeled spectropolarimetry in the MWIR,” Opt. Express15(20), 12792–12805 (2007). [CrossRef] [PubMed]
  16. J. Craven-Jones, M. W. Kudenov, M. G. Stapelbroek, and E. L. Dereniak, “Infrared hyperspectral imaging polarimeter using birefringent prisms,” Appl. Opt.50(8), 1170–1185 (2011). [CrossRef] [PubMed]
  17. C. Zhang, B. Xiangli, B. Zhao, and X. Yuan, “A static polarization imaging spectrometer based on a Savart polariscope,” Opt. Commun.203(1-2), 21–26 (2002). [CrossRef]
  18. C. Zhang, B. Zhao, and B. Xiangli, “Wide-field-of-view polarization interference imaging spectrometer,” Appl. Opt.43(33), 6090–6094 (2004). [CrossRef] [PubMed]
  19. C. Zhang, X. Yan, and B. Zhao, “A novel model for obtaining interferogram and spectrum based on the temporarily and spatially mixed modulated polarization interference imaging spectrometer,” Opt. Commun.281(8), 2050–2056 (2008). [CrossRef]
  20. T. Mu, C. Zhang, and B. Zhao, “Principle and analysis of a polarization imaging spectrometer,” Appl. Opt.48(12), 2333–2339 (2009). [CrossRef] [PubMed]
  21. X. Jian, C. Zhang, L. Zhang, and B. Zhao, “The data processing of the temporarily and spatially mixed modulated polarization interference imaging spectrometer,” Opt. Express18(6), 5674–5680 (2010). [CrossRef] [PubMed]
  22. C. Zhang and X. Jian, “Wide-spectrum reconstruction method for a birefringence interference imaging spectrometer,” Opt. Lett.35(3), 366–368 (2010). [CrossRef] [PubMed]
  23. T. Mu, C. Zhang, W. Ren, and X. Jian, “Static dual-channel polarization imaging spectrometer for simultaneous acquisition of inphase and antiphase interference images,” Meas. Sci. Technol.22(10), 105302 (2011). [CrossRef]
  24. T. Mu, C. Zhang, W. Ren, L. Zhang, and X. Jian, “Interferometric verification for the polarization imaging spectrometer,” J. Mod. Opt.58(2), 154–159 (2011). [CrossRef]
  25. R. G. Sellar and G. D. Boreman, “Comparison of relative signal-to-noise ratios of different classes of imaging spectrometer,” Appl. Opt.44(9), 1614–1624 (2005). [CrossRef] [PubMed]
  26. T. Mu, C. Zhang, and B. Zhao, “Analysis of the accuracy optical path difference and fringe location in polarization interference imaging spectrometer,” Acta Phys. Sin.58, 3877–3886 (2009).
  27. G. Wong, R. Pilkington, and A. R. Harvey, “Achromatization of Wollaston polarizing beam splitters,” Opt. Lett.36(8), 1332–1334 (2011). [CrossRef] [PubMed]
  28. B. A. Patterson, M. Antoni, J. Courtial, A. J. Duncan, W. Sibbett, and M. J. Padgett, “An ultra-compact static Fourier-transform spectrometer based on a single birefringent component,” Opt. Commun.130(1-3), 1–6 (1996). [CrossRef]
  29. W. Ren, C. Zhang, T. Mu, and H. Dai, “Spectrum reconstruction based on the constrained optimal linear inverse methods,” Opt. Lett.37(13), 2580–2582 (2012). [CrossRef] [PubMed]
  30. Newport Corporation, http://www.newport.com/ .
  31. J. Liu, Y. Cai, H. Chen, X. Zeng, D. Zou, and S. Xu, “Design for the optical retardation in broadband zero-order half-wave plates,” Opt. Express19(9), 8557–8564 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited