OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 16 — Jul. 30, 2012
  • pp: 18224–18229

All optical tunable storage of phase-shift-keyed data packets

Stefan Preußler and Thomas Schneider  »View Author Affiliations


Optics Express, Vol. 20, Issue 16, pp. 18224-18229 (2012)
http://dx.doi.org/10.1364/OE.20.018224


View Full Text Article

Enhanced HTML    Acrobat PDF (884 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The requirements for higher data rates in optical communication systems lead to the use of more efficient modulation formats. In the networks the all optical synchronization and storage of these signals is still a major challenge in order to enable higher transmittable data rates and reduce the energy consumption. In this contribution we show for the first time, to the best of our knowledge, the tunable storage of phase modulated optical data packets with up to 60 pulse widths. This opens the way to the optical storage of data packets modulated with highly efficient modulation formats.

© 2012 OSA

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(290.5900) Scattering : Scattering, stimulated Brillouin

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: June 6, 2012
Revised Manuscript: July 10, 2012
Manuscript Accepted: July 17, 2012
Published: July 24, 2012

Citation
Stefan Preußler and Thomas Schneider, "All optical tunable storage of phase-shift-keyed data packets," Opt. Express 20, 18224-18229 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-16-18224


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. J. Winzer and R.-J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE94, 952–985 (2006). [CrossRef]
  2. R. S. Tucker, “Green optical communicationspart II: energy limitations in networks,” IEEE J. Sel. Top. Quantum Electron.17, 261–274 (2011). [CrossRef]
  3. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tuneable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett.94, 153902–153906 (2005). [CrossRef] [PubMed]
  4. K. Y. Song, M. G. Herráez, and L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express13, 82–88 (2005). [CrossRef] [PubMed]
  5. T. Schneider, “Time Delay limits of stimulated-Brillouin-scattering based slow light systems,” Opt. Lett.33, 1398–1400 (2008). [CrossRef] [PubMed]
  6. T. Schneider, M. Junker, and K.-U. Lauterbach, “Time delay enhancement in stimulated Brillouin scattering based slow light systems,” Opt. Lett.32, 220–222 (2007). [CrossRef] [PubMed]
  7. B. Zhang, L. Yan, I. Fazal, L. Zhang, A. E. Willner, Z. Zhu, and D. J. Gauthier, “Slow light on Gbps differential-phase-shift-keying signals,” Opt. Express15, 1878–1883 (2007). [CrossRef] [PubMed]
  8. K. Jamshidi, S. Preussler, A. Wiatrek, and T. Schneider, “A review to the all-optical quasi-light storage,” IEEE J. Sel. Top. Quantum Electron.18, 884–890 (2012). [CrossRef]
  9. T. Schneider, K. Jamshidi, and S. Preussler, “Quasi-light storage: a method for the tunable storage of optical packets with a potential delay-bandwidth product of several thousand bits,” J. Lightwave Technol.28, 2586–2592 (2010). [CrossRef]
  10. S. Preussler, A. Wiatrek, K. Jamshidi, and T. Schneider, “Quasi-light-storage enhancement by reducing the Brillouin gain bandwidth,” Appl. Opt.50, 4252–4256 (2011). [CrossRef] [PubMed]
  11. A. H. Gnauck and P. J. Winzer, “Optical phase-shift-keyed transmission,” J. Lightwave Technol.23, 115–130 (2005). [CrossRef]
  12. S. Preussler, K. Jamshidi, A. Wiatrek, R. Henker, C. Bunge, and T. Schneider, “Quasi-Light-Storage based on time-frequency coherence,” Opt. Express17, 15790–15798 (2009). [CrossRef] [PubMed]
  13. T. Schneider, Nonlinear Optics in Telecommunications (Springer-Verlag, 2004).
  14. A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photon.2, 1–59 (2010). [CrossRef]
  15. T. Schneider, M. Junker, and K.-U. Lauterbach, “Theoretical and experimental investigation of Brillouin scattering for the generation of Millimeter waves,” J. Opt. Soc. Am. B23, 1012–1019 (2006). [CrossRef]
  16. D. Cotter, “Stimulated Brillouin scattering in monomode optical fiber,” J. Opt. Commun.4, 10–19 (1983). [CrossRef]
  17. E. Voges and K. Petermann, Handbuch der Optischen Kommunikationstechnik (Springer-Verlag, 2002).
  18. S. Preussler, A. Wiatrek, K. Jamshidi, and T. Schneider, “Brillouin scattering gain bandwidth reduction down to 3.4MHz,” Opt. Express19, 8565–8570 (2011). [CrossRef] [PubMed]
  19. S. Preussler, A. Wiatrek, K. Jamshidi, and T. Schneider, “Quasi-light-storage enhancement by reducing the brillouin gain bandwidth,” Appl. Opt.50, 4252–4256 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited