OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 16 — Jul. 30, 2012
  • pp: 18348–18355

Durability of stochastic antireflective structures - analyses on damage thresholds and adsorbate elimination

Marcel Schulze, Michael Damm, Michael Helgert, Ernst-Bernhard Kley, Stefan Nolte, and Andreas Tünnermann  »View Author Affiliations


Optics Express, Vol. 20, Issue 16, pp. 18348-18355 (2012)
http://dx.doi.org/10.1364/OE.20.018348


View Full Text Article

Enhanced HTML    Acrobat PDF (2186 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We fabricated stochastic antireflective structures (ARS) and analyzed their stability against high power laser irradiation and high temperature annealing. For 8 ps pulse duration and 1030 nm wavelength we experimentally determined their laser induced damage threshold to 4.9 (±0.3) J/cm2, which is nearly as high as bulk fused silica with 5.6 (±0.3) J/cm2. A commercial layer stack reached 2.0 (±0.2) J/cm2. An annealing process removed adsorbed organics, as shown by XPS measurements, and significantly increased the transmission of the ARS. Because of their monolithic build the ARS endure such high temperature treatments. For more sensitive samples an UV irradiation proved to be capable. It decreased the absorbed light and reinforced the transmission.

© 2012 OSA

OCIS Codes
(120.7000) Instrumentation, measurement, and metrology : Transmission
(140.3440) Lasers and laser optics : Laser-induced breakdown
(160.6030) Materials : Silica
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Laser Microfabrication

History
Original Manuscript: March 30, 2012
Manuscript Accepted: June 21, 2012
Published: July 26, 2012

Citation
Marcel Schulze, Michael Damm, Michael Helgert, Ernst-Bernhard Kley, Stefan Nolte, and Andreas Tünnermann, "Durability of stochastic antireflective structures - analyses on damage thresholds and adsorbate elimination," Opt. Express 20, 18348-18355 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-16-18348


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. G. Bernhard and W. H. Miller, “A corneal nipple pattern in insect compound eyes,” Acta Physiol. Scand.56, 385–386 (1962). [CrossRef] [PubMed]
  2. Y. Ono, Y. Kimura, Y. Ohta, and N. Nishida, “Antireflection effect in ultrahigh spatial-frequency holographic relief gratings,” Appl. Opt.26, 1142–1146 (1987). [CrossRef] [PubMed]
  3. W. H. Southwell, “Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces,” J. Opt. Soc. Am. A8, 549–553 (1991). [CrossRef]
  4. E. B. Grann, M. G. Moharam, and D. A. Pommet, “Optimal design for antireflective tapered two-dimensional subwavelength grating structures,” J. Opt. Soc. Am. A12, 333–339 (1995). [CrossRef]
  5. X. Jing, J. Ma, S. Liu, Y. Jin, H. He, J. Shao, and Z. Fan, “Analysis and design of transmittance for an antireflective surface microstructure,” Opt. Express17, 16119–16134 (2009). [CrossRef] [PubMed]
  6. Y. M. Song, H. J. Choi, J. S. Yu, and Y. T. Lee, “Design of highly transparent glasses with broadband antireflective subwavelength structures,” Opt. Express18, 13063–13071 (2010). [CrossRef] [PubMed]
  7. A. Deinega, I. Valuev, B. Potapkin, and Y. Lozovik, “Antireflective properties of pyramidally textured surfaces,” Opt. Lett.35, 106–108 (2010). [CrossRef] [PubMed]
  8. P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the “moth eye” principle,” Nature244, 281–282 (1973). [CrossRef]
  9. Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Opt. Lett.24, 1422–1424 (1999). [CrossRef]
  10. A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films351, 73–78 (1999). [CrossRef]
  11. T. Nakanishi, T. Hiraoka, A. Fujimoto, S. Saito, and K. Asakawa, “Nano-patterning using an embedded particle monolayer as an etch mask,” Microelec. Eng.83, 1503–1508 (2006). [CrossRef]
  12. T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett.8, 1429–1433 (2008). [CrossRef] [PubMed]
  13. H. L. Chen, S. Y. Chuang, C. H. Lin, and Y. H. Lin, “Using colloidal lithography to fabricate and optimize sub-wavelength pyramidal and honeycomb structures in solar cells,” Opt. Express15, 14793–14803 (2007). [CrossRef] [PubMed]
  14. U. Schulz, P. Munzert, R. Leitel, I. Wendling, N. Kaiser, and A. Tünnermann, “Antireflection of transparent polymers by advanced plasma etching procedures,” Opt. Express15, 13108–13113 (2007). [CrossRef] [PubMed]
  15. M. Schulze, H.-J. Fuchs, E.-B. Kley, and A. Tünnermann, “New approach for antireflective fused silica surfaces by statistical nanostructures,” Proc. SPIE6883, 68830N (2008). [CrossRef]
  16. C. Pacholski, C. Morhard, J. P. Spatz, D. Lehr, M. Schulze, E.-B. Kley, A. Tünnermann, M. Helgert, M. Sundermann, and R. Brunner, “Antireflective sub-wavelength structures on microlens arrays - comparison of various manufacturing techniques,” Appl. Opt.51, 8–14 (2012). [CrossRef] [PubMed]
  17. M. Schulze, D. Lehr, M. Helgert, E.-B. Kley, and A. Tünnermann, “Transmission enhanced optical lenses with self-organized antireflective subwavelength structures for the UV range,” Opt. Lett.36, 3924–3926 (2011). [CrossRef] [PubMed]
  18. I. Y. Milev, S. S. Dimov, D. V. Terziev, J. I. Iordanova, L. B. Todorova, and A. B. Gelkova, “Laserinduced damage threshold measurements of optical dielectric coatings at λ=1.06 μm,” J. Appl. Phys.70, 4057–4060 (1991). [CrossRef]
  19. W. H. Lowdermilk and D. Milam, “Graded-index antireflection surfaces for high-power laser applications,” Appl. Phys. Lett.36, 891–893 (1980). [CrossRef]
  20. ISO/IEC IS 11254-2:2001: “Lasers and laser-related equipment - Determination of laser-induced damage threshold of optical surfaces - Part 2: S-on-1 test,” International Organization for Standardization, Geneva, Switzerland.
  21. H. Varel, D. Ashkenasi, A. Rosenfeld, R. Herrmann, F. Noack, and E. E. B. Campbell, “Laser-induced damage in SiO2 and CaF2 with picosecond and femtosecond laser pulses,” Appl. Phys. A62, 293–294 (1996). [CrossRef]
  22. M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett.80, 4076–4079 (1998). [CrossRef]
  23. P. L. Kelley, “Self-focusing of optical beams,” Phys. Rev. Lett.15, 1005–1008 (1965). [CrossRef]
  24. L. G. DeShazer, B. E. Newnam, and K. M. Leung, “Role of coating defects in laser-induced damage to dielectric thin films,” Appl. Phys. Lett.23, 607–609 (1973). [CrossRef]
  25. N. Bloembergen, “Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics,” Appl. Opt.12, 661–664 (1973). [CrossRef] [PubMed]
  26. A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. A69, S373–S376 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited