OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 16 — Jul. 30, 2012
  • pp: 18387–18396

Carrier-envelope frequency stabilization of a Ti:sapphire oscillator using different pump lasers

Andreas Vernaleken, Bernhard Schmidt, Martin Wolferstetter, Theodor W. Hänsch, Ronald Holzwarth, and Peter Hommelhoff  »View Author Affiliations


Optics Express, Vol. 20, Issue 16, pp. 18387-18396 (2012)
http://dx.doi.org/10.1364/OE.20.018387


View Full Text Article

Enhanced HTML    Acrobat PDF (1464 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the suitability of various commercially available pump lasers for operation with a carrier-envelope offset frequency stabilized Ti:sapphire oscillator. Although the tested pump lasers differ in their setup and properties (e.g., single vs. multi-mode), we find that they are all well-suited for the purpose. The residual rms phase noise (integrated between 20Hz and 5MHz) of the stabilized oscillator is found to be below 160mrad with each pump laser, corresponding to less than 1/40 of an optical cycle. Differences in performance vary slightly. In particular, our results indicate that the latest generation of multi-mode pump lasers can be used for applications where precise phase control of the oscillator is strictly required.

© 2012 OSA

OCIS Codes
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(140.5560) Lasers and laser optics : Pumping
(140.7090) Lasers and laser optics : Ultrafast lasers
(320.7160) Ultrafast optics : Ultrafast technology
(140.3425) Lasers and laser optics : Laser stabilization

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: May 23, 2012
Revised Manuscript: July 3, 2012
Manuscript Accepted: July 3, 2012
Published: July 26, 2012

Citation
Andreas Vernaleken, Bernhard Schmidt, Martin Wolferstetter, Theodor W. Hänsch, Ronald Holzwarth, and Peter Hommelhoff, "Carrier-envelope frequency stabilization of a Ti:sapphire oscillator using different pump lasers," Opt. Express 20, 18387-18396 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-16-18387


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature416, 233–237 (2002). [CrossRef] [PubMed]
  2. S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science293, 825–828 (2001). [CrossRef] [PubMed]
  3. P. B. Corkum and F. Krausz, “Attosecond science,” Nat. Phys.3, 381–387 (2007). [CrossRef]
  4. F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys.81, 163–234 (2009). [CrossRef]
  5. A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science326, 681 (2009). [CrossRef] [PubMed]
  6. O. Mücke, R. Ell, A. Winter, J. Kim, J. Birge, L. Matos, and F. Kärtner, “Self-referenced 200 MHz octave-spanning Ti:sapphire laser with 50 attosecond carrier-envelope phase jitter,” Opt. Express13, 5163–5169 (2005). [CrossRef] [PubMed]
  7. S. Rausch, T. Binhammer, A. Harth, J. Kim, R. Ell, F. Kärtner, and U. Morgner, “Controlled waveforms on the single-cycle scale from a femtosecond oscillator,” Opt. Express16, 9739–9745 (2008). [CrossRef] [PubMed]
  8. S. A. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B27, B51–B62 (2010). [CrossRef]
  9. S. Witte, R. Zinkstok, W. Hogervorst, and K. Eikema, “Control and precise measurement of carrier-envelope phase dynamics,” Appl. Phys. B78, 5–12 (2004). [CrossRef]
  10. L. Matos, O. D. Mücke, J. Chen, and F. X. Kärtner, “Carrier-envelope phase dynamics and noise analysis in octave-spanning Ti:sapphire lasers,” Opt. Express14, 2497–2511 (2006). [CrossRef] [PubMed]
  11. J. Reichert, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Measuring the frequency of light with mode-locked lasers,” Opt. Commun.172, 59–68 (1999). [CrossRef]
  12. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.84, 5102–5105 (2000). [CrossRef] [PubMed]
  13. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science288, 635–639 (2000). [CrossRef] [PubMed]
  14. G. Paulus, F. Lindner, H. Walther, A. Baltuska, E. Goulielmakis, M. Lezius, and F. Krausz, “Measurement of the phase of few-cycle laser pulses,” Phys. Rev. Lett.91, 253004 (2003). [CrossRef]
  15. M. Krüger, M. Schenk, and P. Hommelhoff, “Attosecond control of electrons emitted from a nanoscale metal tip,” Nature475, 78–81 (2011). [CrossRef] [PubMed]
  16. A. Baltuska, Th. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature421, 611–615 (2003). [CrossRef] [PubMed]
  17. L. Xu, C. Spielmann, A. Poppe, T. Brabec, F. Krausz, and T. W. Hänsch, “Route to phase control of ultrashort light pulses,” Opt. Lett.21, 2008–2010 (1996). [CrossRef] [PubMed]
  18. A. Poppe, R. Holzwarth, A. Apolonski, G. Tempea, C. Spielmann, T. W. Hänsch, and F. Krausz, “Few-cycle optical waveform synthesis,” Appl. Phys. B72, 373–376 (2001). [CrossRef]
  19. T. M. Fortier, J. Ye, S. T. Cundiff, and R. S. Windeler, “Nonlinear phase noise generated in air-silica microstructure fiber and its effect on carrier-envelope phase,” Opt. Lett.27, 445–447 (2002). [CrossRef]
  20. K. Holman, R. Jones, A. Marian, S. Cundiff, and J. Ye, “Detailed studies and control of intensity-related dynamics of femtosecond frequency combs from mode-locked ti:sapphire lasers,” IEEE J. Sel. Top. Quantum Electron.9, 1018–1024 (2003). [CrossRef]
  21. R. Paschotta, A. Schlatter, S. Zeller, H. Telle, and U. Keller, “Optical phase noise and carrier-envelope offset noise of mode-locked lasers,” Appl. Phys. B82, 265–273 (2006). [CrossRef]
  22. R. P. Scott, T. D. Mulder, K. A. Baker, and B. H. Kolner, “Amplitude and phase noise sensitivity of modelocked Ti:sapphire lasers in terms of a complex noise transfer function,” Opt. Express15, 9090–9095 (2007). [CrossRef] [PubMed]
  23. J. McFerran, W. Swann, B. Washburn, and N. Newbury, “Suppression of pump-induced frequency noise in fiber-laser frequency combs leading to sub-radian fceo phase excursions,” Appl. Phys. B86, 219–227 (2007). [CrossRef]
  24. T. D. Mulder, R. P. Scott, and B. H. Kolner, “Amplitude and envelope phase noise of amodelocked laser predicted from its noise transfer function and the pumpnoise power spectrum,” Opt. Express16, 14186–14191 (2008). [CrossRef] [PubMed]
  25. M. Y. Sander, E. P. Ippen, and F. X. Kärtner, “Carrier-envelope phase dynamics of octave-spanning dispersion-managed Ti:sapphire lasers,” Opt. Express18, 4948–4960 (2010). [CrossRef] [PubMed]
  26. D. C. Heinecke, A. Bartels, and S. A. Diddams, “Offset frequency dynamics and phase noise properties of a self-referenced 10 GHz Ti:sapphire frequency comb,” Opt. Express19, 18440–18451 (2011). [CrossRef] [PubMed]
  27. F. Helbing, G. Steinmeyer, and U. Keller, “Carrier-envelope offset phase-locking with attosecond timing jitter,” IEEE J. Sel. Top. Quantum Electron.9, 1030–1040 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited