OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 16 — Jul. 30, 2012
  • pp: 18397–18414

Distributed source model for the full-wave electromagnetic simulation of nonlinear terahertz generation

Christophe Fumeaux, Hungyen Lin, Kazunori Serita, Withawat Withayachumnankul, Thomas Kaufmann, Masayoshi Tonouchi, and Derek Abbott  »View Author Affiliations

Optics Express, Vol. 20, Issue 16, pp. 18397-18414 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1726 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The process of terahertz generation through optical rectification in a nonlinear crystal is modeled using discretized equivalent current sources. The equivalent terahertz sources are distributed in the active volume and computed based on a separately modeled near-infrared pump beam. This approach can be used to define an appropriate excitation for full-wave electromagnetic numerical simulations of the generated terahertz radiation. This enables predictive modeling of the near-field interactions of the terahertz beam with micro-structured samples, e.g. in a near-field time-resolved microscopy system. The distributed source model is described in detail, and an implementation in a particular full-wave simulation tool is presented. The numerical results are then validated through a series of measurements on square apertures. The general principle can be applied to other nonlinear processes with possible implementation in any full-wave numerical electromagnetic solver.

© 2012 OSA

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(180.4243) Microscopy : Near-field microscopy
(300.6495) Spectroscopy : Spectroscopy, teraherz
(110.6795) Imaging systems : Terahertz imaging

ToC Category:
Physical Optics

Original Manuscript: May 31, 2012
Revised Manuscript: July 20, 2012
Manuscript Accepted: July 21, 2012
Published: July 26, 2012

Virtual Issues
Vol. 7, Iss. 9 Virtual Journal for Biomedical Optics

Christophe Fumeaux, Hungyen Lin, Kazunori Serita, Withawat Withayachumnankul, Thomas Kaufmann, Masayoshi Tonouchi, and Derek Abbott, "Distributed source model for the full-wave electromagnetic simulation of nonlinear terahertz generation," Opt. Express 20, 18397-18414 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Rice, Y. Jin, X. F. Ma, X.-C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from <110> zinc-blende crystals,” Appl. Phys. Lett.64(11), 1324–1326 (1994). [CrossRef]
  2. G. Dakovski, B. Kubera, and J. Shan, “Localized terahertz generation via optical rectification in ZnTe,” J. Opt. Soc. Am. B22(8), 1667–1670 (2005). [CrossRef]
  3. J. Z. Xu and X.-C. Zhang, “Optical rectification in an area with a diameter comparable to or smaller than the center wavelength of terahertz radiation,” Opt. Lett.27(12), 1067–1069 (2002). [CrossRef] [PubMed]
  4. J. B. Khurgin, M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich, “Suspended AlGaAs waveguides for tunable difference frequency generation in mid-infrared,” Opt. Lett.33(24), 2904–2906 (2008). [CrossRef] [PubMed]
  5. Z. Ruan, G. Veronis, K. L. Vodopyanov, M. M. Fejer, and S. Fan, “Enhancement of optics-to-THz conversion efficiency by metallic slot waveguides,” Opt. Express17(16), 13502–13515 (2009). [CrossRef] [PubMed]
  6. Q. Chen, Z. Jiang, G. X. Xu, and X.-C. Zhang, “Near-field terahertz imaging with a dynamic aperture,” Opt. Lett.25(15), 1122–1124 (2000). [CrossRef] [PubMed]
  7. T. Kiwa, M. Tonouchi, M. Yamashita, and K. Kawase, “Laser terahertz-emission microscope for inspecting electrical faults in integrated circuits,” Opt. Lett.28(21), 2058–2060 (2003). [CrossRef] [PubMed]
  8. W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. S. Y. Ung, J. Balakrishnan, B. W.-H. Ng, B. Ferguson, S. P. Mickan, B. M. Fischer, and D. Abbott, “T-ray sensing and imaging,” Proc. IEEE95(8), 1528–1558 (2007). [CrossRef]
  9. R. Lecaque, S. Grésillon, and C. Boccara, “THz emission microscopy with sub-wavelength broadband source,” Opt. Express16(7), 4731–4738 (2008). [CrossRef] [PubMed]
  10. Y. S. Lee, Principles of Terahertz Science and Technology (Springer, 2008).
  11. T. Weiland, “A discretization method for the solution of Maxwell’s equations for six-component fields,” AEU, Int. J. Electron. Commun.31(3), 116–120 (1977).
  12. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House 2005).
  13. J.-M. Jin, The Finite Element Method in Electromagnetics, 2nd ed. (Wiley 2002).
  14. W. C. Gibson, The Method of Moments in Electromagnetics (Chapman & Hall/CRC, 2008).
  15. C. M. Dissanayake, M. Premaratne, I. D. Rukhlenko, and G. P. Agrawal, “FDTD modeling of anisotropic nonlinear optical phenomena in silicon waveguides,” Opt. Express18(20), 21427–21448 (2010). [CrossRef] [PubMed]
  16. I. Ahmed, E. H. Khoo, O. Kurniawan, and E. P. Li, “Modeling and simulation of active plasmonics with the FDTD method by using solid state and Lorentz–Drude dispersive model,” J. Opt. Soc. Am. B28(3), 352–359 (2011). [CrossRef]
  17. M. Neshat, D. Saeedkia, and S. Safavi-Naeini, “Semi-analytical calculation of terahertz signal generated from photocurrent radiation in traveling-wave photonic mixers,” Int. J. Infrared Millim. Waves29(9), 809–822 (2008). [CrossRef]
  18. P. Bonnet, X. Ferrieres, B. L. Michielsen, P. Klotz, and J. L. Roumiguières, “Finite-volume time domain method,” in Time Domain Electromagnetics (S. M. Rao, Ed. San Diego, CA: Academic Press, 1999).
  19. C. Fumeaux, D. Baumann, P. Leuchtmann, and R. Vahldieck, “A generalized local time-step scheme for efficient FVTD simulations in strongly inhomogeneous meshes,” IEEE Trans. Microw. Theory Tech.52(3), 1067–1076 (2004). [CrossRef]
  20. H. Lin, C. Fumeaux, B. M. Fischer, and D. Abbott, “Modelling of sub-wavelength THz sources as Gaussian apertures,” Opt. Express18(17), 17672–17683 (2010). [CrossRef] [PubMed]
  21. H. Lin, C. Fumeaux, B. Seam Yu Ung, and D. Abbott, “Comprehensive modeling of THz microscope with a sub-wavelength source,” Opt. Express19(6), 5327–5338 (2011). [CrossRef] [PubMed]
  22. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons, 1991).
  23. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic Press, 1998)
  24. C. A. Balanis, Antenna Theory, 3rd Edition (Wiley, 2005).
  25. D. Li and G. Ma, “Pump-wavelength dependence of terahertz radiation via optical rectification in (110)-oriented ZnTe crystal,” J. Appl. Phys.103(12), 123101 (2008). [CrossRef]
  26. D. H. Auston, “Subpicosecond electro-optic shock waves,” Appl. Phys. Lett.43(8), 713–715 (1983). [CrossRef]
  27. D. A. Kleinman and D. H. Auston, “Theory of electrooptic shock radiation in nonlinear optical media,” IEEE J. Quantum Electron.20(8), 964–970 (1984). [CrossRef]
  28. C. Fumeaux, D. Baumann, S. Atakaramians, and E. Li, “Considerations on paraxial Gaussian beam source conditions for time-domain full-wave simulations,” Annual Rev. of Progress in Appl. Computational Electromagnetics, 401–406 (2009).
  29. N. K. Madsen and R. W. Ziolkowski, “A three-dimensional modified finite volume technique for Maxwell’s equations,” Electromagnetics10(1-2), 147–161 (1990). [CrossRef]
  30. V. Shankar, A. H. Mohammadian, and W. F. Hall, “A time-domain, finite-volume treatment for the Maxwell equations,” Electromagnetics10(1-2), 127–145 (1990). [CrossRef]
  31. C. Fumeaux, K. Sankaran, and R. Vahldieck, “Spherical perfectly matched absorber for finite-volume 3-D domain truncation,” IEEE Trans. Microw. Theory Tech.55(12), 2773–2781 (2007). [CrossRef]
  32. D. Baumann, C. Fumeaux, C. Hafner, and E. P. Li, “A modular implementation of dispersive materials for time-domain simulations with application to gold nanospheres at optical frequencies,” Opt. Express17(17), 15186–15200 (2009). [CrossRef] [PubMed]
  33. M. C. Hoffmann, K.-L. Yeh, J. Hebling, and K. A. Nelson, “Efficient terahertz generation by optical rectification at 1035 nm,” Opt. Express15(18), 11706–11713 (2007). [CrossRef] [PubMed]
  34. E. K. Rahani and T. Kundu, “Electromagnetic THz radiation modeling by DPSM,” Int. J. Infrared Millim. Waves33(3), 376–390 (2012). [CrossRef]
  35. D. Côté, J. E. Sipe, and H. M. van Driel, “Simple method for calculating the propagation of terahertz radiation in experimental geometries,” J. Opt. Soc. Am. B20(6), 1374–1385 (2003). [CrossRef]
  36. K. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, “Antenna effects in terahertz apertureless near-field optical microscopy,” Appl. Phys. Lett.85(14), 2715–2717 (2004). [CrossRef]
  37. A. J. L. Adam, J. M. Brok, M. A. Seo, K. J. Ahn, D. S. Kim, J. H. Kang, Q. H. Park, M. Nagel, and P. C. Planken, “Advanced terahertz electric near-field measurements at sub-wavelength diameter metallic apertures,” Opt. Express16(10), 7407–7417 (2008). [CrossRef] [PubMed]
  38. M. A. Seo, A. J. L. Adam, J. H. Kang, J. W. Lee, K. J. Ahn, Q. H. Park, P. C. M. Planken, and D. S. Kim, “Near field imaging of terahertz focusing onto rectangular apertures,” Opt. Express16(25), 20484–20489 (2008). [CrossRef] [PubMed]
  39. A. Bitzer and M. Walther, “Terahertz near-field imaging of metallic subwavelength holes and hole arrays,” Appl. Phys. Lett.92(23), 231101 (2008). [CrossRef]
  40. K. Serita, S. Mizuno, H. Murakami, I. Kawayama, Y. Takahashi, M. Yoshimura, Y. Mori, J. Darmo, and M. Tonouchi, “Scanning laser terahertz near-field imaging system,” Opt. Express20(12), 12959–12965 (2012). [CrossRef] [PubMed]
  41. D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, “Čherenkov radiation from sfemtosecond optical pulses in electro-optic media,” Phys. Rev. Lett.53(16), 1555–1558 (1984). [CrossRef]
  42. P. U. Jepsen and B. M. Fischer, “Dynamic range in terahertz time-domain transmission and reflection spectroscopy,” Opt. Lett.30(1), 29–31 (2005). [CrossRef] [PubMed]
  43. W. Withayachumnankul, H. Lin, K. Serita, C. M. Shah, S. Sriram, M. Bhaskaran, M. Tonouchi, C. Fumeaux, and D. Abbott, “Sub-diffraction thin-film sensing with planar terahertz metamaterials,” Opt. Express20(3), 3345–3352 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (2428 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited