OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 16 — Jul. 30, 2012
  • pp: 18422–18431

Continuous-wave, short-wavelength infrared mixer using dispersion-stabilized highly-nonlinear fiber

Bill P.-P. Kuo, Masaaki Hirano, and Stojan Radic  »View Author Affiliations

Optics Express, Vol. 20, Issue 16, pp. 18422-18431 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1582 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new type of highly nonlinear fiber (HNLF) was designed and fabricated. The new HNLF was engineered to reduce dispersion shift due to transverse fluctuations while maintaining the modal confinement superior to that of the conventional fibers. The new design strategy was validated by the measurements of the global and local dispersive characteristics under considerable core and index profile deformation induced by tensile stress, which indicated that the dispersive and phase matching characteristics of the fiber did not change even under the highest tensile stress. The characteristics effectively decoupled tension-based Brillouin suppression from phase-matching impairments in parametric mixers for the first time. The new HNLF was used to demonstrate the first coherence-preserving mixer operating in the short-wavelength infrared (SWIR) band. The SWIR mixer was driven by continuous-wave near-infrared (NIR) pump and did not require pump phase dithering to suppress Brillouin scattering.

© 2012 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(190.4975) Nonlinear optics : Parametric processes

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: June 4, 2012
Revised Manuscript: July 17, 2012
Manuscript Accepted: July 18, 2012
Published: July 26, 2012

Bill P.-P. Kuo, Masaaki Hirano, and Stojan Radic, "Continuous-wave, short-wavelength infrared mixer using dispersion-stabilized highly-nonlinear fiber," Opt. Express 20, 18422-18431 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Radic and C. J. McKinstrie, “Optical amplification and signal processing in highly nonlinear optical fiber,” IEICE Trans. Electron.88(C), 859–869 (2005). [CrossRef]
  2. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441(7096), 960–963 (2006). [CrossRef] [PubMed]
  3. M. Galili, J. Zu, H. C. Mulvadm, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davies, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbits/s demultiplexing,” Opt. Express17, 2182–2187 (2009).
  4. B. P.-P. Kuo, E. Myslivets, A. O. J. Wiberg, S. Zlatanovic, C.-S. Brès, S. Moro, F. Gholami, A. Peric, N. Alic, and S. Radic, “Transmission of 640-Gb/s RZ-OOK Channel over 100-km SSMF by wavelength-transparent conjugation,” J. Lightwave Technol.29(4), 516–523 (2011). [CrossRef]
  5. A. O. J. Wiberg, C.-S. Brès, A. Danicic, E. Myslivets, and S. Radic, “Performance of self-seeded parametric multicasting of analog signal,” IEEE Photon. Technol. Lett.23(21), 1570–1572 (2011). [CrossRef]
  6. B. P.-P. Kuo, N. Alic, P. F. Wysocki, and S. Radic, “Simultaneous wavelength-swept generation in NIR and SWIR abdns over comined 329-nm band using swept-pump fiber optical parametric oscillator,” J. Lightwave Technol.29(4), 410–416 (2011). [CrossRef]
  7. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B21(6), 1146–1155 (2004). [CrossRef]
  8. H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express12(21), 5082–5087 (2004). [CrossRef] [PubMed]
  9. T. Okuno, T. Nakanishi, M. Hirano, and M. Onishi, “Practical considerations for the application of highly nonlinear fibers,” in Proc. OFC 2007, paper OTuJ1.
  10. M. Hirano, T. Nakanishi, T. Okuno, and M. Onishi, “Silica-based highly nonlinear fiber and their application,” IEEE J. Sel. Top. Quantum Electron.15(1), 103–113 (2009). [CrossRef]
  11. S. Radic, “Parametric signal processing,” IEEE J. Sel. Top. Quantum Electron.18(2), 670–680 (2012). [CrossRef]
  12. B. P.-P. Kuo and S. Radic, “Highly nonlinear fiber with dispersive characteristic invariant to fabrication fluctuations,” Opt. Express20(7), 7716–7725 (2012). [CrossRef] [PubMed]
  13. E. Myslivets, N. Alic, J. R. Windmiller, and S. Radic, “A new class of high-resolution measurements of arbitrary-dispersion fibers: localization of four-photon mixing process,” J. Lightwave Technol.27(3), 364–375 (2009). [CrossRef]
  14. E. Myslivets, C. Lundström, J. M. Aparicio, S. Moro, A. O. J. Wiberg, C.-S. Brès, N. Alic, P. A. Andrekson, and S. Radic, “Spatial equalization of zero-dispersion wavelength profiles in nonlinear fibers,” IEEE Photon. Technol. Lett.21(24), 1807–1809 (2009). [CrossRef]
  15. M. Takahashi, M. Tadakuma, and T. Yagi, “Dispersion and Brillouin managed HNLFs by strain control techniques,” J. Lightwave Technol.28(1), 59–64 (2010). [CrossRef]
  16. M. Yu, C. J. McKinstrie, and G. P. Agrawal, “Modulational instabilities in dispersion-flattened fibers,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics52(1), 1072–1080 (1995). [CrossRef] [PubMed]
  17. M. E. Marhic, K. K.-Y. Wong, and L. G. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron.10(5), 1133–1141 (2004). [CrossRef]
  18. A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, and O. A. Levring, “Direct continuous-wave measurement of n2 in various types of telecommincation fiber at 1.55 μm,” Opt. Lett.21(24), 1966–1968 (1996). [CrossRef] [PubMed]
  19. I. Brener, P. P. Mitra, D. D. Lee, D. J. Thomson, and D. L. Philen, “High-resolution zero-dispersion wavelength mapping in single-mode fiber,” Opt. Lett.23(19), 1520–1522 (1998). [CrossRef] [PubMed]
  20. J. M. Chávez Boggio and H. L. Fragnito, “Simple four-wave-mixing-based method for measuring the ratio between the third- and fourth-order dispersion in optical fibers,” J. Opt. Soc. Am. B24(9), 2046–2054 (2007). [CrossRef]
  21. M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol.15(10), 1842–1851 (1997). [CrossRef]
  22. N. Yoshizawa and T. Imai, “Stimulated Brillouin scattering suppression by means of applying strain distribution to fiber with cabling,” J. Lightwave Technol.11(10), 1518–1522 (1993). [CrossRef]
  23. F. Gholami, S. Zlatanovic, E. Myslivets, S. Moro, B. P.-P. Kuo, C.-S. Brès, A. O. J. Wiberg, N. Alic, and S. Radic, “10 Gbps Parametric short-wave infrared transmitter,” in Proc. OFC 2011, paper OThC6.
  24. J. M. Chávez-Boggio, S. Moro, B. P.-P. Kuo, N. Alic, B. Stossel, and S. Radic, “Tunable parametric all-fiber short-wavelength IR transmitter,” J. Lightwave Technol.28(4), 443–447 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited