OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 16 — Jul. 30, 2012
  • pp: 18432–18439

Compact fiber-pigtailed InGaAs photoconductive antenna module for terahertz-wave generation and detection

Sang-Pil Han, Namje Kim, Hyunsung Ko, Han-Cheol Ryu, Jeong-Woo Park, Young-Jong Yoon, Jun-Hwan Shin, Dong Hun Lee, Sang-Ho Park, Seok-Hwan Moon, Sung-Wook Choi, Hyang Sook Chun, and Kyung Hyun Park  »View Author Affiliations


Optics Express, Vol. 20, Issue 16, pp. 18432-18439 (2012)
http://dx.doi.org/10.1364/OE.20.018432


View Full Text Article

Enhanced HTML    Acrobat PDF (2196 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a compact fiber-pigtailed InGaAs photoconductive antenna (FPP) module having an effective heat-dissipation solution as well as a module volume of less than 0.7 cc. The heat-dissipation of the FPP modules when using a heat-conductive printed circuit board (PCB) and an aluminium nitride (AlN) submount, without any cooling systems, improve by 40% and 85%, respectively, when compared with a photoconductive antenna chip on a conventional PCB. The AlN submount is superior to those previously reported as a heat-dissipation solution. Terahertz time-domain spectroscopy (THz-TDS) using the FPP module perfectly detects the absorption lines of water vapor in free space and an α-lactose sample.

© 2012 OSA

OCIS Codes
(120.4290) Instrumentation, measurement, and metrology : Nondestructive testing
(260.5150) Physical optics : Photoconductivity
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Spectroscopy

History
Original Manuscript: May 9, 2012
Revised Manuscript: July 6, 2012
Manuscript Accepted: July 21, 2012
Published: July 27, 2012

Citation
Sang-Pil Han, Namje Kim, Hyunsung Ko, Han-Cheol Ryu, Jeong-Woo Park, Young-Jong Yoon, Jun-Hwan Shin, Dong Hun Lee, Sang-Ho Park, Seok-Hwan Moon, Sung-Wook Choi, Hyang Sook Chun, and Kyung Hyun Park, "Compact fiber-pigtailed InGaAs photoconductive antenna module for terahertz-wave generation and detection," Opt. Express 20, 18432-18439 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-16-18432


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell, “All-fiber terahertz time-domain spectrometer operating at 1.5 microm telecom wavelengths,” Opt. Express16(13), 9565–9570 (2008). [CrossRef] [PubMed]
  2. H. Roehle, R. J. B. Dietz, H. J. Hensel, J. Böttcher, H. Künzel, D. Stanze, M. Schell, and B. Sartorius, “Next generation 1.5 microm terahertz antennas: mesa-structuring of InGaAs/InAlAs photoconductive layers,” Opt. Express18(3), 2296–2301 (2010). [CrossRef] [PubMed]
  3. S.-P. Han, H. Ko, N. Kim, H.-C. Ryu, C. W. Lee, Y. A. Leem, D. Lee, M. Y. Jeon, S. K. Noh, H. S. Chun, and K. H. Park, “Optical fiber-coupled InGaAs-based terahertz time-domain spectroscopy system,” Opt. Lett.36(16), 3094–3096 (2011). [CrossRef] [PubMed]
  4. C. Baker, I. S. Gregory, M. J. Evans, W. R. Tribe, E. H. Linfield, and M. Missous, “All-optoelectronic terahertz system using low-temperature-grown InGaAs photomixers,” Opt. Express13(23), 9639–9644 (2005). [CrossRef] [PubMed]
  5. R. Inoue, Y. Ohno, and M. Tonouchi, “Development of fiber-coupled compact terahertz time-domain spectroscopy imaging head,” Jpn. J. Appl. Phys.45(10A), 7928–7932 (2006). [CrossRef]
  6. Y. Lee, S. Tanaka, N. Uetake, S. Fujisaki, R. Inoue, and M. Tonouchi, “Terahertz time-domain spectrometer with module heads coupled to photonic crystal fiber,” Appl. Phys. B87(3), 405–409 (2007). [CrossRef]
  7. C. Jördens, N. Krumbholz, T. Hasek, N. Vieweg, B. Scherger, L. Bähr, M. Mikulics, and M. Koch, “Fibre-coupled terahertz transceiver head,” Electron. Lett.44(25), 1473–1474 (2008). [CrossRef]
  8. D. Zimdars, J. V. Rudd, and M. Warmuth, “A Compact, Fiber-Pigtailed, Terahertz Time Domain Spectroscopy System,” Proc. ISSTT, 414–423 (2000).
  9. J. V. Rudd and D. M. Mittleman, “Influence of substrate-lens design in terahertz time-domain spectroscopy,” J. Opt. Soc. Am. B19(2), 319–328 (2002). [CrossRef]
  10. Y. B. Ji, E. S. Lee, S.-H. Kim, J.-H. Son, and T.-I. Jeon, “A miniaturized fiber-coupled terahertz endoscope system,” Opt. Express17(19), 17082–17087 (2009). [CrossRef] [PubMed]
  11. D. Stanze, A. Deninger, A. Roggenbuck, S. Schindler, M. Schlak, and B. Sartorius, “Compact cw Terahertz Spectrometer Pumped at 1.5 μm Wavelength,” J. Infrared Milli. Terahz. Waves32, 225–232 (2010).
  12. N. Kim, J. Shin, E. Sim, C. W. Lee, D.-S. Yee, M. Y. Jeon, Y. Jang, and K. H. Park, “Monolithic dual-mode distributed feedback semiconductor laser for tunable continuous-wave terahertz generation,” Opt. Express17(16), 13851–13859 (2009). [CrossRef] [PubMed]
  13. N. Kim, Y. A. Leem, M. Y. Jeon, C. W. Lee, S.-P. Han, D. Lee, and K. H. Park, “Widely Tunable 1.55 µm Detuned Dual Mode Laser diode for Compact Continuous-Wave THz Emitter,” ETRI J.33(5), 810–813 (2011). [CrossRef]
  14. N. Kim, S.-P. Han, H. Ko, Y. A. Leem, H.-C. Ryu, C. W. Lee, D. Lee, M. Y. Jeon, S. K. Noh, and K. H. Park, “Tunable continuous-wave terahertz generation/detection with compact 1.55 μm detuned dual-mode laser diode and InGaAs based photomixer,” Opt. Express19(16), 15397–15403 (2011). [CrossRef] [PubMed]
  15. K. H. Park, N. Kim, H. Ko, H.-C. Ryu, J.-W. Park, S.-P. Han, and M. Y. Jeon, “Portable terahertz spectrometer with InP related semiconductor photonic devices,” Proc. SPIE Photonics West, Jan. (2012).
  16. M. Y. Jeon, N. Kim, J. Shin, J. S. Jeong, S.-P. Han, C. W. Lee, Y. A. Leem, D.-S. Yee, H. S. Chun, and K. H. Park, “Widely tunable dual-wavelength Er3+-doped fiber laser for tunable continuous-wave terahertz radiation,” Opt. Express18(12), 12291–12297 (2010). [CrossRef] [PubMed]
  17. E. R. Brown, “THz generation by photomixing in ultrafast photoconductors,” Int. J. High Speed Electron. Syst.13(02), 497–545 (2003). [CrossRef]
  18. N. S. Daghestani, S. Persheyev, M. A. Cataluna, G. Ross, and M. J. Rose, “THz generation from a nanocrystalline silicon-based photoconductive device,” Semicond. Sci. Technol.26(7), 075015 (2011). [CrossRef]
  19. A. Danylov, “THz laboratory measurements of atmospheric absorption between 6% and 52% relative humidity,” Submillimeter-Wave Technology Laboratory University of Massachusetts Lowell, 175 Cabot Street, Suite 130, Lowell, MA 01854, http://stl.uml.edu , Sep. (2006).
  20. A. Roggenbuck, H. Schmitz, A. Deninger, I. Cámara Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys.12(4), 043017 (2010). [CrossRef]
  21. E. R. Brown, J. E. Bjarnason, A. M. Fedor, and T. M. Korter, “On the strong and narrow absorption signature in lactose at 0.53THz,” Appl. Phys. Lett.90(6), 061908 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited