OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 16 — Jul. 30, 2012
  • pp: 18494–18504

Optimization of broadband optical response of multilayer nanospheres

Wenjun Qiu, Brendan G. DeLacy, Steven G. Johnson, John D. Joannopoulos, and Marin Soljačić  »View Author Affiliations

Optics Express, Vol. 20, Issue 16, pp. 18494-18504 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1062 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose an optimization-based theoretical approach to tailor the optical response of silver/silica multilayer nanospheres over the visible spectrum. We show that the structure that provides the largest cross-section per volume/mass, averaged over a wide frequency range, is the silver coated silica sphere. We also show how properly chosen mixture of several species of different nanospheres can have an even larger minimal cross-section per volume/mass over the entire visible spectrum.

© 2012 OSA

OCIS Codes
(290.2200) Scattering : Extinction
(290.5825) Scattering : Scattering theory

ToC Category:

Original Manuscript: June 4, 2012
Revised Manuscript: July 20, 2012
Manuscript Accepted: July 23, 2012
Published: July 27, 2012

Virtual Issues
Vol. 7, Iss. 9 Virtual Journal for Biomedical Optics

Wenjun Qiu, Brendan G. DeLacy, Steven G. Johnson, John D. Joannopoulos, and Marin Soljačić, "Optimization of broadband optical response of multilayer nanospheres," Opt. Express 20, 18494-18504 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Pu, R. Grange, C.-L. Hsieh, and D. Psaltis, “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation,” Phys. Rev. Lett.104, 207402 (2010). [CrossRef] [PubMed]
  2. X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: From synthesis and properties to biological and biomedical applications,” Adv. Mater.21, 4880–4910 (2009). [CrossRef]
  3. C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C111, 3806–3819 (2007). [CrossRef]
  4. S. Alyones, C. Bruce, and A. Buin, “Numerical methods for solving the problem of electromagnetic scattering by a thin finite conducting wire,” IEEE Trans. Antennas Propag.55, 1856–1861 (2007). [CrossRef]
  5. C. W. Bruce and S. Alyones, “Extinction efficiencies for metallic fibers in the infrared,” Appl. Opt.48, 5095–5098 (2009). [CrossRef] [PubMed]
  6. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine,” J. Phys. Chem. B110, 7238–7248 (2006). [CrossRef] [PubMed]
  7. J. Zhu, J. Li, and J. Zhao, “Tuning the wavelength drift between resonance light absorption and scattering of plasmonic nanoparticle,” Appl. Phys. lett.99, 101901 (2011). [CrossRef]
  8. C. E. Román-Velázquez and C. Noguez, “Designing the plasmonic response of shell nanoparticles: Spectral representation,” J. Chem. Phys.134, 044116 (2011). [CrossRef] [PubMed]
  9. S. Oldenburg, R. Averitt, S. Westcott, and N. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett.288, 243 – 247 (1998). [CrossRef]
  10. E. Prodan and P. Nordlander, “Structural tunability of the plasmon resonances in metallic nanoshells,” Nano Lett.3, 543–547 (2003). [CrossRef]
  11. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302, 419–422 (2003). [CrossRef] [PubMed]
  12. R. Bardhan, N. K. Grady, T. Ali, and N. J. Halas, “Metallic nanoshells with semiconductor cores: Optical characteristics modified by core medium properties,” ACS Nano4, 6169–6179 (2010). [CrossRef] [PubMed]
  13. R. Bardhan, S. Mukherjee, N. A. Mirin, S. D. Levit, P. Nordlander, and N. J. Halas, “Nanosphere-in-a-nanoshell: A simple nanomatryushka,” J. Phys. Chem. C114, 7378–7383 (2010). [CrossRef]
  14. R. E. Hamam, A. Karalis, J. D. Joannopoulos, and M. Soljačić, “Coupled-mode theory for general free-space resonant scattering of waves,” Phys. Rev. A75, 053801 (2007). [CrossRef]
  15. Z. Ruan and S. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett.105, 013901 (2010). [CrossRef] [PubMed]
  16. Z. Ruan and S. Fan, “Temporal coupled-mode theory for fano resonance in light scattering by a single obstacle,” J. Phys. Chem. C114, 7324–7329 (2010). [CrossRef]
  17. Z. Ruan and S. Fan, “Design of subwavelength superscattering nanospheres,” Appl. Phys. lett.98, 043101 (2011). [CrossRef]
  18. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).
  19. C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Songs, 1983).
  20. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1985).
  21. S. G. Johnson, “The nlopt nonlinear optimization package, http://ab-initio.mit.edu/nlopt ,”.
  22. S. Kucherenko and Y. Sytsko, “Application of deterministic low-discrepancy sequences in global optimization,” Comput. Optim. Appl.30, 297–318 (2005). [CrossRef]
  23. M. J. D. Powell, “The bobyqa algorithm for bound constrained optimization without derivatives,” Tech. rep., Department of Applied Mathematics and Theoretical Physics, Cambridge England (2009).
  24. N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: Plasmonexciton coupling in nanoshell j-aggregate complexes,” Nano Lett.8, 3481–3487 (2008). [CrossRef] [PubMed]
  25. A. Yoshida and N. Kometani, “Effect of the interaction between molecular exciton and localized surface plasmon on the spectroscopic properties of silver nanoparticles coated with cyanine dye j-aggregates,” J. Chem. Phys. C114, 2867–2872 (2010). [CrossRef]
  26. V. S. Lebedev, A. S. Medvedev, D. N. Vasil’ev, D. A. Chubich, and A. G. Vitukhnovsky, “Optical properties of noble-metal nanoparticles coated with a dye j-aggregate monolayer,” Quantum Electron.40, 246–248 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited