OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 17 — Aug. 13, 2012
  • pp: 18545–18554

Unidirectionally optical coupling from free space into silicon waveguide with wide flat-top angular efficiency

Kun Li, Guangyuan Li, Feng Xiao, Fan Lu, Zhonghua Wang, and Anshi Xu  »View Author Affiliations


Optics Express, Vol. 20, Issue 17, pp. 18545-18554 (2012)
http://dx.doi.org/10.1364/OE.20.018545


View Full Text Article

Enhanced HTML    Acrobat PDF (1816 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A grating coupling scheme from free-space light into silicon waveguide with a remarkable property of wide flat-top angular efficiency is proposed and theoretically investigated. The coupling structure is composed of two cascaded gratings with a proper distance between their peak angular efficiencies. A quantitative semi-analytical theory based on coupled-mode models is developed for performance prediction and validated with the fully vectorial aperiodic Fourier modal method (a-FMM). With the theory, wide flat-top angular response is achieved and the conditions are pointed out. Proof-of-principle demonstrations show that the −1 dB angular width, a figure of merit to evaluate the flat-top performance, is broadened to almost 3 to 4 times, and meanwhile the −3 dB angular width, i.e., angular-full-width-half-maximum (AFWHM), is widened to nearly more than twice, compared with the reference gratings composed of the same number of periodic defects. We believe this work will find applications in biological or chemical sensing and novel optical devices.

© 2012 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(130.3120) Integrated optics : Integrated optics devices

ToC Category:
Diffraction and Gratings

History
Original Manuscript: April 18, 2012
Revised Manuscript: July 20, 2012
Manuscript Accepted: July 22, 2012
Published: July 30, 2012

Citation
Kun Li, Guangyuan Li, Feng Xiao, Fan Lu, Zhonghua Wang, and Anshi Xu, "Unidirectionally optical coupling from free space into silicon waveguide with wide flat-top angular efficiency," Opt. Express 20, 18545-18554 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-17-18545


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. W. Ang, G. T. Reed, A. Vonsovici, A. G. R. Evans, P. R. Routley, and M. R. Josey, “Effects of grating heights on highly efficient unibond SOI waveguide grating couplers,” IEEE Photon. Technol. Lett.12, 59–61 (2000). [CrossRef]
  2. G. Roelkens, D. Vermeulen, D. V. Thourhout, R. Baets, S. Brision, P. Lyan, P. Gautier, and J. M. Fédéli, “High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit,” Appl. Phys. Lett.92, 131101 (2008). [CrossRef]
  3. M. A. Basha, S. Chaudhuri, and S. Safavi-Naeini, “A study of coupling interactions in finite arbitrarily-shaped grooves in electromagnetic scattering problem,” Opt. Express18, 2743–2752 (2010). [CrossRef] [PubMed]
  4. D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. V. Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform,” Opt. Express18, 18278–18283 (2010). [CrossRef] [PubMed]
  5. S. Scheerlinck, J. Schrauwen, F. V. Laere, D. Taillaert, D. V. Thourhout, and R. Baets, “Efficient, broadband and compact metal grating couplers for silicon-on-insulator waveguides,” Opt. Express15, 9625–9630 (2007). [CrossRef] [PubMed]
  6. G. Roelkens, D. V. Thourhout, and R. Baets, “High efficiency grating coupler between silicon-on-insulator waveguides and perfectly vertical optical fibers,” Opt. Lett.32, 1495–1497 (2007). [CrossRef] [PubMed]
  7. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.38, 949–955 (2002). [CrossRef]
  8. F. V. Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. V. Thourhout, M. F. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. Light-wave Technol.25, 151–156 (2007). [CrossRef]
  9. L. Vivien, D. Pascal, S. Lardenois, D. Marris-Morini, E. Cassan, F. Grillot, S. Laval, J. M. Fédéli, and L. E. Melhaoui, “Light injection in SOI microwaveguides using high-efficiency grating couplers,” J. Lightwave Technol.24, 3810–3815 (2006). [CrossRef]
  10. G. Maire, L. Vivien, G. Sattler, A. Kazmierczak, B. Sanchez, K. B. Gylfason, A. Griol, D. Marris-Morini, E. Cassan, D. Giannone, H. Sohlström, and D. Hill, “High efficiency silicon nitride surface grating couplers,” Opt. Express16, 328–333 (2008). [CrossRef] [PubMed]
  11. J. Wu, G. Zheng, Z. Li, and C. Yang, “Focal plane tuning in wide-field-of-view microscope with Talbot pattern illumination,” Opt. Lett.36, 2179–2181 (2011). [CrossRef] [PubMed]
  12. J. Ho, A. V. Parwani, D. M. Jukic, Y. Yagi, L. Anthony, and J. R. Gilbertson, “Use of whole slide imaging in surgical pathology quality assurance: design and pilot validation studies,” Hum. Pathol.37, 322–331 (2006). [CrossRef] [PubMed]
  13. S. Nagrath, L. V. Sequist, S. Maheswaran, D. W. Bell, D. Irimia, L. Ulkus, M. R. Smith, E. L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U. J. Balis, R. G. Tompkins, D. A. Haber, and M. Toner, “Isolation of rare circulating tumour cells in cancer patients by microchip technology,” Nature450, 1235–1239 (2007). [CrossRef] [PubMed]
  14. A. F. Coskun, I. Sencan, T. W. Su, and A. Ozcan, “Lensless wide-field fluorescent imaging on a chip using compressive decoding of sparse objects,” Opt. Express18, 10510–10523 (2010). [CrossRef] [PubMed]
  15. K. L. Lee, C. W. Lee, W. S. Wang, and P. K. Wei, “Sensitive biosensor array using surface plasmon resonance on metallic nanoslits,” J. Biomed. Opt.12, 044023 (2007). [CrossRef] [PubMed]
  16. E. D. Tommasi, L. D. Stefano, I. Rea, V. D. Sarno, L. Rotiroti, P. Arcari, A. Lamberti, C. Sanges, and I. Rendina, “Porous silicon based resonant mirrors for biochemical sensing,” Sensors8, 6549–6556 (2008). [CrossRef]
  17. A. Sentenac and A. Fehrembach, “Angular tolerant resonant grating filters under oblique incidence,” J. Opt. Soc. Am. A22, 475–480 (2005). [CrossRef]
  18. A. B. Greenwell, S. Boonruang, and M. G. Moharam, “Multiple wavelength resonant grating filters at oblique incidence with broad angular acceptance,” Opt. Express15, 8626–8638 (2007). [CrossRef] [PubMed]
  19. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999).
  20. H. Liu, P. Lalanne, X. Yang, and J. P. Hugonin, “Surface plasmon generation by subwavelength isolated objects,” IEEE J. Sel. Top. Quantum Electron.14, 1522–1529 (2008). [CrossRef]
  21. D. Taillaert, F. V. Laere, M. Ayre, W. Bogaerts, D. V. Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys.45, 6071–6077 (2006). [CrossRef]
  22. L. Dong, S. Iyer, S. Popov, and A. Friberg, “3D fabrication of waveguide and grating coupler in SU-8 by optimized gray scale electron beam lithography,” in Proceedings of ACP (2010).
  23. A. Sure, T. Dillon, J. Murakowski, C. Lin, D. Pustai, and D. W. Prather, “Fabrication and characterization of three-dimensional silicon tapers,” Opt. Express11, 3555–3561 (2003). [CrossRef] [PubMed]
  24. S. Lardenois, D. Pascal, L. Vivien, E. Cassan, S. Laval, R. Orobtchouk, M. Heitzmann, N. Bouzaida, and L. Mollard, “Low-loss submicrometer silicon-on-insulator rib waveguides and corner mirrors,” Opt. Lett.28, 1150–1152 (2003). [CrossRef] [PubMed]
  25. G. Li, F. Xiao, L. Cai, K. Alameh, and A. Xu, “Theory of the scattering of light and surface plasmon polaritons by finite-size subwavelength metallic defects vis field decomposition,” New J. Phys.13, 073045 (2011). [CrossRef]
  26. G. Li, L. Cai, F. Xiao, Y. Pei, and A. Xu, “A quantitative theory and the generalized Bragg condition for surface plasmon Bragg reflectors,” Opt. Express18, 10487–10499 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited