OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 17 — Aug. 13, 2012
  • pp: 18611–18619

Dispersion-stabilized highly-nonlinear fiber for wideband parametric mixer synthesis

Bill P.-P. Kuo, John M. Fini, Lars Grüner-Nielsen, and Stojan Radic  »View Author Affiliations

Optics Express, Vol. 20, Issue 17, pp. 18611-18619 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (787 KB) | SpotlightSpotlight on Optics

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Conventional highly-nonlinear fiber (HNLF) designs are optimized for high field-confinement but are also inherently susceptible to dispersion fluctuations. The design compromise prevents fiber-optical parametric mixers from possessing high power efficiency and extended operating bandwidth simultaneously. Using a new fiber waveguide design, we have fabricated and tested a new class of HNLF that possesses a significantly lower level of dispersion fluctuations while maintaining a high level of field-confinement comparable to that in conventional HNLFs. The fiber was used to demonstrate an all-fiber parametric oscillator operating in short-wavelength infrared (SWIR) band with a watt-level pump, for the first time.

© 2012 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(190.4975) Nonlinear optics : Parametric processes

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: June 4, 2012
Revised Manuscript: July 20, 2012
Manuscript Accepted: July 22, 2012
Published: July 31, 2012

Virtual Issues
September 7, 2012 Spotlight on Optics

Bill P.-P. Kuo, John M. Fini, Lars Grüner-Nielsen, and Stojan Radic, "Dispersion-stabilized highly-nonlinear fiber for wideband parametric mixer synthesis," Opt. Express 20, 18611-18619 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Z. Tong, C. Lundström, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, E. Tipsuwannakul, B. J. Puttnam, H. Toda, and L. Grüner-Nielsen, “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nat. Photonics5(7), 430–436 (2011). [CrossRef]
  2. A. O. J. Wiberg, C.-S. Brès, A. Danicic, E. Myslivets, and S. Radic, “Performance of self-seeded parametric multicasting of analog signal,” IEEE Photon. Technol. Lett.23(21), 1570–1572 (2011). [CrossRef]
  3. A. O. J. Wiberg, Z. Tong, L. Liu, J. L. Ponsetto, V. Ataie, E. Myslivets, N. Alic, and S. Radic, “Demonstration of 40 GHz analog-to-digital conversion using copy-and-sample-all parametric processing,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OW3C.2.
  4. C.-S. Brès, S. Zlatanovic, A. O. J. Wiberg, and S. Radic, “Reconfigurable parametric channelized receiver for instantaneous spectral analysis,” Opt. Express19(4), 3531–3541 (2011). [CrossRef] [PubMed]
  5. A. O. J. Wiberg, B. P.-P. Kuo, C.-S. Brès, N. Alic, and S. Radic, “640-Gb/s transmitter and self-tracked demultiplexing receiver using single parametric gate,” IEEE Photon. Technol. Lett.23(8), 507–509 (2011). [CrossRef]
  6. T. Kurosu, K. Tanizawa, S. Petit, and S. Namiki, “Parametric tunable dispersion compensation for the transmission of sub-picosecond pulses,” Opt. Express19(16), 15549–15559 (2011). [CrossRef] [PubMed]
  7. B. P.-P. Kuo, E. Myslivets, A. O. J. Wiberg, S. Zlatanovic, C.-S. Brès, S. Moro, F. Gholami, A. Peric, N. Alic, and S. Radic, “Transmission of 640-Gb/s RZ-OOK Channel over 100-km SSMF by wavelength-transparent conjugation,” J. Lightwave Technol.29(4), 516–523 (2011). [CrossRef]
  8. R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics4(10), 690–695 (2010). [CrossRef]
  9. B. P.-P. Kuo, N. Alic, P. F. Wysocki, and S. Radic, “Simultaneous wavelength-swept generation in NIR and SWIR abdns over comined 329-nm band using swept-pump fiber optical parametric oscillator,” J. Lightwave Technol.29(4), 410–416 (2011). [CrossRef]
  10. T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, “Silica-based functional fibers with enhanced nonlinearity and their applications,” IEEE J. Sel. Top. Quantum Electron.5(5), 1385–1391 (1999). [CrossRef]
  11. M. Hirano, T. Nakanishi, T. Okuno, and M. Onishi, “Silica-based highly nonlinear fiber and their application,” IEEE J. Sel. Top. Quantum Electron.15(1), 103–113 (2009). [CrossRef]
  12. E. Myslivets, N. Alic, J. R. Windmiller, and S. Radic, “A new class of high-resolution measurements of arbitrary-dispersion fibers: localization of four-photon mixing process,” J. Lightwave Technol.27(3), 364–375 (2009). [CrossRef]
  13. F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, “Impact of dispersion fluctuations on dual-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett.16(5), 1292–1294 (2004). [CrossRef]
  14. P. Velanas, A. Bogris, and D. Syvridis, “Impact of dispersion fluctuations on the noise properties of fiber optic parametric amplifiers,” J. Lightwave Technol.24(5), 2171–2178 (2006). [CrossRef]
  15. M. Karlsson, “Four-wave mixing in fibers with randomly varying zero-dispersion wavelength,” J. Opt. Soc. Am. B15(8), 2269–2275 (1998). [CrossRef]
  16. B. P.-P. Kuo and S. Radic, “Highly nonlinear fiber with dispersive characteristic invariant to fabrication fluctuations,” Opt. Express20(7), 7716–7725 (2012). [CrossRef] [PubMed]
  17. M. Takahashi, R. Sugizaki, J. Hiroishi, M. Tadakuma, Y. Taniguchi, and T. Yagi, “Low-loss and low-dispersion-slope highly-nonlinear fibers,” J. Lightwave Technol.23(11), 3615–3624 (2005). [CrossRef]
  18. J. M. Chavez Boggio, J. R. Windmiller, M. Knutzen, R. Jiang, C. Brès, N. Alic, B. Stossel, K. Rottwitt, and S. Radic, “730-nm optical parametric conversion from near- to short-wave infrared band,” Opt. Express16(8), 5435–5443 (2008). [CrossRef] [PubMed]
  19. On June 4, 2012, a patent describing a similar index profile held by Y. Taniguchi, J. Hiroshi, M. Takahashi, and R. Sugizaki, titled “Nonlinear optical fiber, nonlinear optical device, and optical signal processing apparatus,” US Patent No. 7,925,132 B2, were brought to the authors’ attention.
  20. J. M. Chavez Boggio and H. L. Fragnito, “Simple four-wave-mixing-based method for measuring the ratio between the third- and fourth-order dispersion in optical fibers,” J. Opt. Soc. Am. B24(9), 2046–2054 (2007). [CrossRef]
  21. E. Myslivets, N. Alic, and S. Radic, “High resolution measurement of arbitrary-dispersion fibers: dispersion reconstruction techniques,” J. Lightwave Technol.28, 3478–3487 (2010).
  22. J. M. Chávez Boggio, J. D. Marconi, and H. L. Fragnito, “Experimental and numerical investigation of the SBS-threshold increase in an optical fiber by applying strain distribution,” J. Lightwave Technol.23(11), 3808–3814 (2005). [CrossRef]
  23. M. Takahashi, M. Tadakuma, and T. Yagi, “Dispersion and Brillouin managed HNLFs by strain control techniques,” J. Lightwave Technol.28(1), 59–64 (2010). [CrossRef]
  24. L. Grüner-Nielsen, S. Herstrøm, S. Dasgupta, D. Richardson, D. Jakobsen, C. Lundström, P. A. Andrekson, M. E. V. Pedersen, and B. Pálsdóttir, “Silica-based highly nonlinear fibers with a high SBS threshold,” in Proc. IEEE Photonics Society Winter Topical meeting, paper MD4.2 (2011).
  25. J. Hansryd, P. A. Andrekson, M. Westlund, Jie Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron.8(3), 506–520 (2002). [CrossRef]
  26. J. E. Sharping, “Microstructure fiber based optical parametric oscillators,” J. Lightwave Technol.26(14), 2184–2191 (2008). [CrossRef]
  27. G. K. L. Wong, A. Y. H. Chen, S. G. Murdoch, R. Leonhardt, J. D. Harvey, N. Y. Joly, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Continuous-wave tunable optical parametric generation in a photonic-crystal fiber,” J. Opt. Soc. Am. B22(11), 2505–2511 (2005). [CrossRef]
  28. G. K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, and V. Marie, “High-conversion-efficiency widely-tunable all-fiber optical parametric oscillator,” Opt. Express15(6), 2947–2952 (2007). [CrossRef] [PubMed]
  29. Y. Deng, Q. Lin, F. Lu, G. P. Agrawal, and W. H. Knox, “Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber,” Opt. Lett.30(10), 1234–1236 (2005). [CrossRef] [PubMed]
  30. J. E. Sharping, M. A. Foster, A. L. Gaeta, J. Lasri, O. Lyngnes, and K. Vogel, “Octave-spanning, high-power microstructure-fiber-based optical parametric oscillators,” Opt. Express15(4), 1474–1479 (2007). [CrossRef] [PubMed]
  31. T. P. White, R. C. McPhedran, C. M. de Sterke, L. C. Botten, and M. J. Steel, “Confinement losses in microstructured optical fibers,” Opt. Lett.26(21), 1660–1662 (2001). [CrossRef] [PubMed]
  32. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Loss in solid-core photonic crystal fibers due to interface roughness scattering,” Opt. Express13(20), 7779–7793 (2005). [CrossRef] [PubMed]
  33. M. Farahmand and M. de Sterke, “Parametric amplification in presence of dispersion fluctuations,” Opt. Express12(1), 136–142 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited