OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 17 — Aug. 13, 2012
  • pp: 18620–18629

Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: Fabrication, fluorescence imaging and laser performance

Hongliang Liu, Yuechen Jia, Javier Rodríguez Vázquez de Aldana, Daniel Jaque, and Feng Chen  »View Author Affiliations

Optics Express, Vol. 20, Issue 17, pp. 18620-18629 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2256 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the fabrication of depressed cladding waveguide lasers in Nd:YAG (neodymium doped yttrium aluminum garnet, Nd:Y3Al5O12) ceramics microstructured by femtosecond laser pulses. Full control over the confined light spatial distribution is demonstrated by the fabrication of high contrast waveguides with hexagonal, circular and trapezoidal configurations. The confocal fluorescence measurements of the waveguides reveal that the original luminescence features of Nd3+ ions are well-preserved in the waveguide regions. Under optical pump at 808 nm, cladding waveguides showed continuous wave efficient laser oscillation. The maximum output power obtained at 1064.5 nm is ~181 mW with a slope efficiency as high as 44%, which suggests that the fabricated Nd:YAG ceramic waveguides are promising candidates for efficient integrated laser sources.

© 2012 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(140.3390) Lasers and laser optics : Laser materials processing
(230.7380) Optical devices : Waveguides, channeled

ToC Category:
Integrated Optics

Original Manuscript: June 8, 2012
Revised Manuscript: July 25, 2012
Manuscript Accepted: July 27, 2012
Published: July 31, 2012

Hongliang Liu, Yuechen Jia, Javier Rodríguez Vázquez de Aldana, Daniel Jaque, and Feng Chen, "Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: Fabrication, fluorescence imaging and laser performance," Opt. Express 20, 18620-18629 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. J. Murphy, Integrated Optical Circuits and Components (Marcel Dekker, New York, 1999).
  2. C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron.35(6), 159–239 (2011). [CrossRef]
  3. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996). [CrossRef] [PubMed]
  4. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008). [CrossRef]
  5. M. Ams, G. D. Marshall, P. Dekker, J. Piper, and M. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev.3(6), 535–544 (2009). [CrossRef]
  6. A. Zoubir, C. Lopez, M. Richardson, and K. Richardson, “Femtosecond laser fabrication of tubular waveguides in poly(methyl methacrylate),” Opt. Lett.29(16), 1840–1842 (2004). [CrossRef] [PubMed]
  7. V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathe, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond irradiation induced refractive-index changes and channel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett.85(7), 1122–1124 (2004). [CrossRef]
  8. A. Rodenas and A. K. Kar, “High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing,” Opt. Express19(18), 17820–17833 (2011). [CrossRef] [PubMed]
  9. T. Calmano, J. Siebenmorgen, F. Reichert, M. Fechner, A. G. Paschke, N. O. Hansen, K. Petermann, and G. Huber, “Crystalline Pr:SrAl12O19 waveguide laser in the visible spectral region,” Opt. Lett.36(23), 4620–4622 (2011). [CrossRef] [PubMed]
  10. J. Burghoff, S. Nolte, and A. Tunnermann, “Origins of waveguiding in femtosecond laser structured LiNbO3,” Appl. Phys., A Mater. Sci. Process.89(1), 127–132 (2007). [CrossRef]
  11. Y. Tan, F. Chen, J. R. Vázquez de Aldana, G. A. Torchia, A. Benayas, and D. Jaque, “Continuous wave laser generation at 1064 nm in femtosecond laser inscribed Nd:YVO4 channel waveguides,” Appl. Phys. Lett.97(3), 031119 (2010). [CrossRef]
  12. Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. M. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express18(24), 24994–24999 (2010). [CrossRef] [PubMed]
  13. Y. Y. Ren, N. N. Dong, J. Macdonald, F. Chen, H. J. Zhang, and A. K. Kar, “Continuous wave channel waveguide lasers in Nd:LuVO4 fabricated by direct femtosecond laser writing,” Opt. Express20(3), 1969–1974 (2012). [CrossRef] [PubMed]
  14. T. Calmano, A. G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B103(1), 1–4 (2011). [CrossRef]
  15. T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B100(1), 131–135 (2010). [CrossRef]
  16. J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009). [CrossRef]
  17. A. Rodenas, A. Benayas, J. R. Macdonald, J. Zhang, D. Y. Tang, D. Jaque, and A. K. Kar, “Direct laser writing of near-IR step-index buried channel waveguides in rare earth doped YAG,” Opt. Lett.36(17), 3395–3397 (2011). [CrossRef] [PubMed]
  18. C. Zhang, N. N. Dong, J. Yang, F. Chen, J. R. Vázquez de Aldana, and Q. M. Lu, “Channel waveguide lasers in Nd:GGG crystals fabricated by femtosecond laser inscription,” Opt. Express19(13), 12503–12508 (2011). [CrossRef] [PubMed]
  19. A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing,” Opt. Lett.30(17), 2248–2250 (2005). [CrossRef] [PubMed]
  20. A. Okhrimchuk, V. Mezentsev, A. Shestakov, and I. Bennion, “Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses,” Opt. Express20(4), 3832–3843 (2012). [CrossRef] [PubMed]
  21. D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm³⁺ZBLAN waveguide laser,” Opt. Lett.36(9), 1587–1589 (2011). [CrossRef] [PubMed]
  22. N. Dong, F. Chen, and J. R. Vázquez de Aldana, “Efficient second harmonic generation by birefringent phase matching in femtosecond laser inscribed KTP cladding waveguides,” Phys. Status Solidi6(7), 306–308 (2012). [CrossRef]
  23. Y. Jia, J. R. Vazquez de Aldana, C. Romero, Y. Ren, Q. Lu, and F. Chen, “Femtosecond-laser-inscribed BiB3O6 nonlinear cladding waveguide for second-harmonic generation,” Appl. Phys. Express5(7), 072701 (2012). [CrossRef]
  24. Y. Liao, J. Xu, Y. Cheng, Z. Zhou, F. He, H. Sun, J. Song, X. Wang, Z. Xu, K. Sugioka, and K. Midorikawa, “Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a femtosecond laser,” Opt. Lett.33(19), 2281–2283 (2008). [CrossRef] [PubMed]
  25. S. J. Beecher, R. R. Thomson, D. T. Reid, N. D. Psaila, M. Ebrahim-Zadeh, and A. K. Kar, “Strain field manipulation in ultrafast laser inscribed BiB3O6 optical waveguides for nonlinear applications,” Opt. Lett.36(23), 4548–4550 (2011). [CrossRef] [PubMed]
  26. R. Mary, S. J. Beecher, G. Brown, R. R. Thomson, D. Jaque, S. Ohara, and A. K. Kar, “Compact, highly efficient ytterbium doped bismuthate glass waveguide laser,” Opt. Lett.37(10), 1691–1693 (2012). [CrossRef] [PubMed]
  27. A. Ikesue, Y. L. Aung, T. Taira, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res.36(1), 397–429 (2006). [CrossRef]
  28. F. Chen, Y. Tan, and D. Jaque, “Ion-implanted optical channel waveguides in neodymium-doped yttrium aluminum garnet transparent ceramics for integrated laser generation,” Opt. Lett.34(1), 28–30 (2009). [CrossRef] [PubMed]
  29. Y. Tan and F. Chen, “Proton implanted optical channel waveguides in Nd:YAG laser ceramics,” J. Phys. D43(7), 075105 (2010). [CrossRef]
  30. Y. Tan, C. Zhang, F. Chen, F. Q. Liu, D. Jaque, and Q. M. Lu, “Room-temperature continuous wave laser oscillations in Nd:YAG ceramic waveguides produced by carbon ion implantation,” Appl. Phys. B103(4), 837–840 (2011). [CrossRef]
  31. G. A. Torchia, P. F. Meilán, A. Rodenas, D. Jaque, C. Mendez, and L. Roso, “Femtosecond laser written surface waveguides fabricated in Nd:YAG ceramics,” Opt. Express15(20), 13266–13271 (2007). [CrossRef] [PubMed]
  32. G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008). [CrossRef]
  33. F. Chen, “Micro-and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photon. Rev. DOI . [CrossRef]
  34. I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum.78(1), 013705 (2007). [CrossRef] [PubMed]
  35. J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express18(15), 16035–16041 (2010). [CrossRef] [PubMed]
  36. A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. (Berl.)95(1), 85–96 (2009). [CrossRef]
  37. J. Lamela, A. Ródenas, D. Jaque, F. Jaque, G. A. Torchia, C. Mendez, and L. Roso, “Field optical and micro-luminescence investigations of femtosecond laser micro-structured Nd:YAG crystals,” Opt. Express15(6), 3285–3290 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited