OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 17 — Aug. 13, 2012
  • pp: 18636–18645

A waveguide-typed plasmonic mode converter

Hae-Ryeong Park, Jong-Moon Park, Min-su Kim, and Myung-Hyun Lee  »View Author Affiliations

Optics Express, Vol. 20, Issue 17, pp. 18636-18645 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1449 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Waveguide-typed plasmonic mode converters (WPMCs) at a wavelength of 1.55 μm are presented. The WPMC is composed of an insulator-metal-insulator waveguide (IMI-W), a 1st reversely tapered insulator-metal-insulator-metal-insulator waveguide (RT-IMIMI-W), an insulator-metal-insulator-metal-insulator waveguide (IMIMI-W), a 2nd RT-IMIMI-W with lateral silver mirrors (LSMs), and a metal-insulator-metal waveguide (MIM-W) in series. The mode sizes for the IMI-W, IMIMI-W, and MIM-W via the IMIMI-W with LSMs were not only calculated using a finite element method but were also experimentally measured. The input mode size of 10.3 μm × 10.3 μm from a polarization-maintaining single-mode fiber was squeezed to the mode size of ~2.9 μm × 2.9 μm in measurement by converting an s0 mode to an Sa0 mode via an Ss0 mode. The WPMC may be potentially useful for bridging micro- to nano-plasmonic integrated circuits.

© 2012 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(160.5470) Materials : Polymers
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Integrated Optics

Original Manuscript: June 1, 2012
Revised Manuscript: July 10, 2012
Manuscript Accepted: July 24, 2012
Published: July 31, 2012

Hae-Ryeong Park, Jong-Moon Park, Min-su Kim, and Myung-Hyun Lee, "A waveguide-typed plasmonic mode converter," Opt. Express 20, 18636-18645 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Raether, Surface Plasmons (Springer-Verlag, 1988).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  3. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005). [CrossRef] [PubMed]
  4. M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express19(22), 22029–22106 (2011). [CrossRef] [PubMed]
  5. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured Plasmonic Sensors,” Chem. Rev.108(2), 494–521 (2008). [CrossRef] [PubMed]
  6. S. A. Maier, “Plasmonics: Metal nanostructures for subwavelength photonic devices,” IEEE J. Sel. Top. Quantum Electron.12(6), 1214–1220 (2006). [CrossRef]
  7. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today9(7-8), 20–27 (2006). [CrossRef]
  8. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006). [CrossRef]
  9. L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express13(17), 6645–6650 (2005). [CrossRef] [PubMed]
  10. P. Ginzburg and M. Orenstein, “Plasmonic transmission lines: from micro to nano scale with λ/4 impedance matching,” Opt. Express15(11), 6762–6767 (2007). [CrossRef] [PubMed]
  11. P. Ginzburg, D. Arbel, and M. Orenstein, “Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing,” Opt. Lett.31(22), 3288–3290 (2006). [CrossRef] [PubMed]
  12. S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett.98(2), 021107 (2011). [CrossRef]
  13. R. Yang, M. A. G. Abushagur, and Z. Lu, “Efficiently squeezing near infrared light into a 21 nm-by-24 nm nanospot,” Opt. Express16(24), 20142–20148 (2008). [CrossRef] [PubMed]
  14. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A21(12), 2442–2446 (2004). [CrossRef] [PubMed]
  15. P. Berini, “Plasmon-polariton waves guided by thin lossy mrtal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B61(15), 10484–10503 (2000). [CrossRef]
  16. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon.1(3), 484–588 (2009). [CrossRef]
  17. W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, J.-M. Lee, M.- Kim, J. J. Ju, and M.-H. Lee, “Enhanced transmission in a fiber-coupled Au stripe waveguide system,” IEEE Photon. Technol. Lett.22(2), 100–102 (2010). [CrossRef]
  18. J. J. Ju, S. Park, M.- Kim, J. T. Kim, S. K. Park, Y. J. Park, and M.-H. Lee, “Polymer-based long-range surface plasmon polariton waveguides for 10-Gbps optical signal transmission applications,” J. Lightwave Technol.26(11), 1510–1518 (2008). [CrossRef]
  19. S. Park, J. J. Ju, J. T. Kim, M. S. Kim, S. K. Park, J.-M. Lee, W.-J. Lee, and M.-H. Lee, “Sub-dB/cm propagation loss in silver stripe waveguides,” Opt. Express17(2), 697–702 (2009). [CrossRef] [PubMed]
  20. S. Park, M.- Kim, J. T. Kim, S. K. Park, J. J. Ju, and M.-H. Lee, “Long range surface plasmon polariton waveguides at 1.31 and 1.55 μm wavelengths,” Opt. Commun.281(8), 2057–2061 (2008). [CrossRef]
  21. S. Park, M.- Kim, J. J. Ju, J. T. Kim, S. K. Park, J.-M. Lee, W.-J. Lee, and M.-H. Lee, “Temperature dependence of symmetric and asymmetric structured Au stripe waveguides,” Opt. Commun.283(17), 3267–3270 (2010). [CrossRef]
  22. P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-ranging surface-plasmon-polariton waveguides,” J. Appl. Phys.98(4), 043109 (2005). [CrossRef]
  23. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol.23(1), 413–422 (2005). [CrossRef]
  24. R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Opt. Express13(3), 977–984 (2005). [CrossRef] [PubMed]
  25. H.-R. Park, M.- Kim, I.-S. Jeong, J.-M. Park, J. J. Ju, and M.-H. Lee, “Nanoimprinted Bragg gratings for long-range surface plasmon polaritons fabricated via spin coating of a transparent silver ink,” IEEE Trans. NanoTechnol.10(4), 844–848 (2011). [CrossRef]
  26. D. Woolf, M. Loncar, and F. Capasso, “The forces from coupled surface plasmon polaritons in planar waveguides,” Opt. Express17(22), 19996–20011 (2009). [CrossRef] [PubMed]
  27. H.-R. Park, J.-M. Park, M. S. Kim, J. J. Ju, J.-H. Son, and M.-H. Lee, “Effective plasmonic mode-size converter,” Opt. Express19(22), 21605–21613 (2011). [CrossRef] [PubMed]
  28. M.-H. Lee, “Long-range surface plasmon polariton waveguides containing very thin spin-coated silver films,” Thin Solid Films519(18), 6097–6101 (2011). [CrossRef]
  29. InkTec Co, Ltd., Available: http://www.inktec.com
  30. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, New York, 1985).
  31. ChemOptics, Inc., Available: http://www.chemoptics.co.kr
  32. W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, M.- Kim, J. T. Kim, and J. J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys.103(7), 073713 (2008). [CrossRef]
  33. C. O. M. S. O. L. Multiphysics, Inc., Available: http://www.comsol.com .
  34. FDTD and MODE Solutions, Lumerical Solutions Inc., Available: http://www.lumerical.com
  35. H.-R. Park, “Investigation of hybrid plasmonic waveguides for nano-scale optical focusing and propagation,” Ph. D thesis, Sungkyunkwan University (2011).
  36. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys.114(2), 185–200 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited