OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 17 — Aug. 13, 2012
  • pp: 18665–18678

Analysis of long-range surface plasmon polaritons in nonlinear plasmonic waveguides using pseudospectral method

Chia-Chien Huang  »View Author Affiliations


Optics Express, Vol. 20, Issue 17, pp. 18665-18678 (2012)
http://dx.doi.org/10.1364/OE.20.018665


View Full Text Article

Enhanced HTML    Acrobat PDF (947 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A full-vectorial pseudospectral method is reported for solving the mode characteristics of nonlinear dielectric and plasmonic waveguides. The coupled equations are formulated in terms of transverse magnetic-field components, and self-consistent solutions are obtained through an iterative procedure. The proposed scheme applies in a saturable medium with biaxial anisotropy of practical interest. The accuracy and efficiency of this scheme are demonstrated by solving the mode bistability of a nonlinear dielectric optical waveguide, analyzed by the well-known finite-element-method-based imaginary-distance beam propagation method. Furthermore, the relationship between geometry and input power is studied by analyzing the power dispersion curve of the long-range surface plasmon polariton modes of a nonlinear plasmonic waveguide.

© 2012 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(230.7380) Optical devices : Waveguides, channeled
(240.4350) Optics at surfaces : Nonlinear optics at surfaces

ToC Category:
Optics at Surfaces

History
Original Manuscript: June 28, 2012
Manuscript Accepted: July 23, 2012
Published: July 31, 2012

Citation
Chia-Chien Huang, "Analysis of long-range surface plasmon polaritons in nonlinear plasmonic waveguides using pseudospectral method," Opt. Express 20, 18665-18678 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-17-18665


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. H. Wood, “Multiple quantum well (MQW) waveguide modulators,” J. Lightwave Technol.6(6), 743–757 (1988). [CrossRef]
  2. S. Radic, N. George, and G. P. Agrawal, “Optical switching in λ/4-shifted nonlinear periodic structures,” Opt. Lett.19(21), 1789–1791 (1994). [CrossRef] [PubMed]
  3. Y. D. Wu, “New all-optical wavelength auto-router based on spatial solitons,” Opt. Express12(18), 4172–4177 (2004). [CrossRef] [PubMed]
  4. T. Fujisawa and M. Koshiba, “All-optical logic gates based on nonlinear slot-waveguide couplers,” J. Opt. Soc. Am. B23(4), 684–691 (2006). [CrossRef]
  5. A. R. Davoyan, I. V. Shadrivov, and Y. S. Kivshar, “Nonlinear plasmonic slot waveguides,” Opt. Express16(26), 21209–21214 (2008). [CrossRef] [PubMed]
  6. I. D. Rukhlenko, A. Pannipitiya, and M. Premaratne, “Dispersion relation for surface plasmon polaritons in metal/nonlinear-dielectric/metal slot waveguides,” Opt. Lett.36(17), 3374–3376 (2011). [CrossRef] [PubMed]
  7. I. D. Rukhlenko, A. Pannipitiya, M. Premaratne, and G. Agrawal, “Exact dispersion relation for nonlinear plasmonic waveguides,” Phys. Rev. B84(11), 113409 (2011). [CrossRef]
  8. A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Y. S. Kivshar, “Nonlinear nanofocusing in tapered plasmonic waveguides,” Phys. Rev. Lett.105(11), 116804 (2010). [CrossRef] [PubMed]
  9. J. R. Salgueiro and Y. S. Kivshar, “Nonlinear plasmonic directional couplers,” Appl. Phys. Lett.97(8), 081106 (2010). [CrossRef]
  10. A. Degiron and D. R. Smith, “Nonlinear long-range plasmonic waveguides,” Phys. Rev. A82(3), 033812 (2010). [CrossRef]
  11. K. Hayata and M. Koshiba, “Full vectorial analysis of nonlinear-optical waveguides,” J. Opt. Soc. Am. B5(12), 2494–2501 (1988). [CrossRef]
  12. R. D. Ettinger, F. A. Fernandez, B. M. A. Rahman, and J. B. Davies, “Vector finite element solutions of saturable nonlinear strip-loaded optical waveguides,” IEEE Photon. Technol. Lett.3(2), 147–149 (1991). [CrossRef]
  13. X. H. Wang and G. K. Gambrell, “Full vectorial simulation of bistability phenomena in nonlinear-optical channel waveguides,” J. Opt. Soc. Am. B10(6), 1090–1095 (1993). [CrossRef]
  14. S. S. A. Obayya, B. M. A. Rahman, K. T. V. Grattan, and H. A. E. Mikati, “Full vectorial finite–element solution of nonlinear bistable optical waveguides,’,” IEEE J. Quantum Electron.38(8), 1120–1125 (2002). [CrossRef]
  15. K. Hayata and M. Koshiba, “Full vectorial analysis of nonlinear-optical waveguides,” J. Lightwave Technol.20, 1876–1884 (2002).
  16. J. P. Boyd, Chebyshev and Fourier Spectral Methods (Springer–Verlag, 2nd edition, 2001).
  17. C. C. Huang, C. C. Huang, and J. Y. Yang, “A full-vectorial pseudospectral modal analysis of dielectric optical waveguides with stepped refractive index profiles,” IEEE J. Sel. Top. Quantum Electron.11(2), 457–465 (2005). [CrossRef]
  18. P. J. Chiang, C. P. Yu, and H. C. Chang, “Full-vectorial optical waveguide mode solvers using multidomain pseudospectral frequency-domain (PSFD) formulations,” IEEE J. Quantum Electron.44(1), 56–66 (2008). [CrossRef]
  19. C. C. Huang, “Simulation of optical waveguides by novel full-vectorial pseudospectral-based imaginary-distance beam propagation method,” Opt. Express16(22), 17915–17934 (2008). [CrossRef] [PubMed]
  20. J. B. Xiao and X. H. Sun, “Full-vectorial mode solver for anisotropic optical waveguides using multidomain spectral collocation method,” Opt. Commun.283(14), 2835–2840 (2010). [CrossRef]
  21. C. C. Huang, “Numerical investigation of mode characteristics of nanoscale surface plasmon-polaritons using a pseudospectral scheme,” Opt. Express18(23), 23711–23726 (2010). [CrossRef] [PubMed]
  22. C. C. Huang, “Solving the full anisotropic liquid crystal waveguides by using an iterative pseudospectral-based eigenvalue method,” Opt. Express19(4), 3363–3378 (2011). [CrossRef] [PubMed]
  23. C. C. Huang, “Pseudospectral mode solver for analyzing nonlinear optical waveguides,” Opt. Express20(12), 13014–13029 (2012). [CrossRef] [PubMed]
  24. P. Berini, “Plasmon polariton modes guided by a metal film of finite width,” Opt. Lett.24(15), 1011–1013 (1999). [CrossRef] [PubMed]
  25. P. Berini, “Plasmon-polariton modes guided by a metal film of finite width bounded by different dielectrics,” Opt. Express7(10), 329–335 (2000). [CrossRef] [PubMed]
  26. P. Berini, “Plasmon-polariton modes guided thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B61(15), 10484–10503 (2000). [CrossRef]
  27. P. Berini, “Plasmon-polariton modes guided thin lossy metal films of finite width: bound modes of asymmetric structures,” Phys. Rev. B63(12), 125417 (2001). [CrossRef]
  28. S. J. Al-Bader, “Optical transmission on metallic wires-fundamental modes,” IEEE J. Quantum Electron.40(3), 325–329 (2004). [CrossRef]
  29. A. Degiron and D. R. Smith, “Numerical simulations of long-range plasmons,” Opt. Express14(4), 1611–1625 (2006). [CrossRef] [PubMed]
  30. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon.1(3), 484–588 (2009). [CrossRef]
  31. G. I. Stegeman and C. T. Seaton, “Nonlinear surface plasmons guided by thin metal films,” Opt. Lett.9(6), 235–237 (1984). [CrossRef] [PubMed]
  32. J. Ariyasu, C. T. Seaton, G. I. Stegeman, A. A. Maradudin, and R. F. Wallis, “Nonlinear surface polaritons guided by meal films,” J. Appl. Phys.58(7), 2460–2466 (1985). [CrossRef]
  33. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited