OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 17 — Aug. 13, 2012
  • pp: 18679–18691

Polarization-sensitive cathodoluminescence Fourier microscopy

Toon Coenen and Albert Polman  »View Author Affiliations


Optics Express, Vol. 20, Issue 17, pp. 18679-18691 (2012)
http://dx.doi.org/10.1364/OE.20.018679


View Full Text Article

Enhanced HTML    Acrobat PDF (2904 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Determining the emission polarization properties of sub-wavelength structures like optical nanoantennas, nanocavities and photonic crystals is important to understand their physical properties and to optimize their use in applications. Recently we have shown that angle-resolved cathodoluminescence imaging spectroscopy (ARCIS), which uses a 30 keV electron beam as an excitation source, is a useful technique to study the far-field properties of such structures. Here we extend the technique with polarization-sensitive angular detection. As proof-of-principle, we experimentally probe the emission polarization properties of three orthogonal dipolar emitters of which the polarization is well-known and find excellent agreement between experiment and theory. We access these dipole orientations by exciting an unstructured gold surface and a ridge nanoantenna with an in-plane dipolar plasmon resonance. The light emission is collected with an aluminum half paraboloid mirror. We show how to take the effect of the paraboloid mirror on the emission polarization into account and how to predict the polarization-filtered pattern if the emission polarization is known. Furthermore, we calculate that by introducing a slit in the beam path the polarization contrast in cathodoluminescence spectroscopy can be strongly enhanced. Finally, we reconstruct the emission polarization from the experimental data and show that from these field patterns we can infer the orientation of the induced dipole moment. The ability to measure the emission polarization, in combination with the sensitivity to the local density of optical states, broad spectral range and high excitation resolution, can be employed to study photonic nanostructures in great detail.

© 2012 OSA

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(250.1500) Optoelectronics : Cathodoluminescence

ToC Category:
Microscopy

History
Original Manuscript: July 3, 2012
Revised Manuscript: July 26, 2012
Manuscript Accepted: July 26, 2012
Published: July 31, 2012

Citation
Toon Coenen and Albert Polman, "Polarization-sensitive cathodoluminescence Fourier microscopy," Opt. Express 20, 18679-18691 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-17-18679


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Jackson, “Classical Electrodynamics” (John Wiley and Sons, Hoboken, 1999).
  2. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, New York, 2006), 251–362.
  3. N. J. Halas, S. Lal, W. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev.111 (6), 3913–3961 (2011). [CrossRef] [PubMed]
  4. L. Cao, J. S. White, J. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater.8, 643–647 (2009). [CrossRef] [PubMed]
  5. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983).
  6. K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92, 183901 (2004). [CrossRef]
  7. O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Optical scattering resonances of single and coupled dimer plasmonic nanoantennas,” Opt. Express15, 17736–17746 (2007). [CrossRef] [PubMed]
  8. M. A. Lieb, J. M. Zavislan, and L. Novotny, “Single-molecule orientations determined by direct emission pattern imaging,” J. Opt. Soc. Am. B21, 1210–1215 (2004). [CrossRef]
  9. I. Sersic, C. Tuambilangana, and A. F. Koenderink, “Fourier microscopy of single plasmonic scatterers,” New. J. Phys.13, 083019 (2011). [CrossRef]
  10. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010). [CrossRef] [PubMed]
  11. K. G. Lee, X. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics5, 166–169 (2011). [CrossRef]
  12. T. Coenen, E. J. R. Vesseur, A. Polman, and A. F. Koenderink, “Directional emission from plasmonic Yagi Uda antennas probed by angle-resolved cathodoluminescence spectroscopy,” Nano Lett.11, 3779–3784 (2011). [CrossRef] [PubMed]
  13. T. Coenen, E. J. R. Vesseur, and A. Polman, “Angle-resolved cathodoluminescence spectroscopy,” Appl. Phys. Lett.99, 143103 (2011). [CrossRef]
  14. E. J. R. Vesseur and A. Polman, “Plasmonic whispering gallery cavities as optical antennas,” Nano Lett.11, 5524–5530 (2011). [CrossRef] [PubMed]
  15. T. Coenen, E. J. R. Vesseur, and A. Polman, “Deep subwavelength spatial characterization of angular emission from single-crystal Au plasmonic ridge nanoantennas,” ACS Nano6, 1742–1750 (2012). [CrossRef] [PubMed]
  16. M. Kuttge, E. J. R. Vesseur, A. F. Koenderink, H. J. Lezec, H. A. Atwater, F. J. García de Abajo, and A. Polman, “Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence,” Phys. Rev. B79, 113405 (2009). [CrossRef]
  17. F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys82, 209–275 (2010). [CrossRef]
  18. P. B. Jonhson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B6, 4370–4379 (1972). [CrossRef]
  19. K. Takeuchi and N. Yamamoto, “Visualization of surface plasmon polariton waves in two-dimensional plasmonic crystal by cathodoluminescence,” Opt. Express19, 12365–12374 (2011). [CrossRef] [PubMed]
  20. H. T. Lin, D. H. Rich, A. Konkar, P. Chen, and A. Madhukar, “Carrier relaxation and recombination in GaAs/AlGaAs quantum heterostructures and nanostructures probed with time-resolved cathodoluminescence,” J. Appl. Phys.81, 3186–3195 (1997). [CrossRef]
  21. D. H. Rich, Y. Tang, A. Konkar, P. Chen, and A. Madhukar, “Polarized cathodoluminescence study of selectively grown self-assembled InAs/GaAs quantum dots,” J. Appl. Phys.84, 6337–6344 (1998). [CrossRef]
  22. N. Yamamoto, S. Bhunia, and Y. Watanabe, “Polarized cathodoluminescence study of InP nanowire by transmission electron microscopy,” Appl. Phys. Lett.88, 154106 (2006). [CrossRef]
  23. J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and deconstructing the Fano lineshape in plasmonic nanoclusters,” Nano Lett.12, 1058–1062 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited